本文整理匯總了Python中mcts.MCTSNode方法的典型用法代碼示例。如果您正苦於以下問題:Python mcts.MCTSNode方法的具體用法?Python mcts.MCTSNode怎麽用?Python mcts.MCTSNode使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mcts
的用法示例。
在下文中一共展示了mcts.MCTSNode方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_never_select_illegal_moves
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_never_select_illegal_moves(self):
probs = np.array([0.02] * (go.N * go.N + 1))
# let's say the NN were to accidentally put a high weight on an illegal move
probs[1] = 0.99
root = MCTSNode(SEND_TWO_RETURN_ONE)
root.incorporate_results(probs, 0, root)
# and let's say the root were visited a lot of times, which pumps up the
# action score for unvisited moves...
root.N = 100000
root.child_N[root.position.all_legal_moves()] = 10000
# this should not throw an error...
leaf = root.select_leaf()
# the returned leaf should not be the illegal move
self.assertNotEqual(leaf.fmove, 1)
# and even after injecting noise, we should still not select an illegal move
for i in range(10):
root.inject_noise()
leaf = root.select_leaf()
self.assertNotEqual(leaf.fmove, 1)
示例2: test_action_flipping
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_action_flipping(self):
np.random.seed(1)
probs = np.array([.02] * (
utils_test.BOARD_SIZE * utils_test.BOARD_SIZE + 1))
probs += np.random.random(
[utils_test.BOARD_SIZE * utils_test.BOARD_SIZE + 1]) * 0.001
black_root = MCTSNode(
utils_test.BOARD_SIZE, go.Position(utils_test.BOARD_SIZE))
white_root = MCTSNode(utils_test.BOARD_SIZE, go.Position(
utils_test.BOARD_SIZE, to_play=go.WHITE))
black_root.select_leaf().incorporate_results(probs, 0, black_root)
white_root.select_leaf().incorporate_results(probs, 0, white_root)
# No matter who is to play, when we know nothing else, the priors
# should be respected, and the same move should be picked
black_leaf = black_root.select_leaf()
white_leaf = white_root.select_leaf()
self.assertEqual(black_leaf.fmove, white_leaf.fmove)
self.assertEqualNPArray(
black_root.child_action_score, white_root.child_action_score)
示例3: test_never_select_illegal_moves
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_never_select_illegal_moves(self):
probs = np.array([0.02] * (
utils_test.BOARD_SIZE * utils_test.BOARD_SIZE + 1))
# let's say the NN were to accidentally put a high weight on an illegal move
probs[1] = 0.99
root = MCTSNode(utils_test.BOARD_SIZE, SEND_TWO_RETURN_ONE)
root.incorporate_results(probs, 0, root)
# and let's say the root were visited a lot of times, which pumps up the
# action score for unvisited moves...
root.N = 100000
root.child_N[root.position.all_legal_moves()] = 10000
# this should not throw an error...
leaf = root.select_leaf()
# the returned leaf should not be the illegal move
self.assertNotEqual(leaf.fmove, 1)
# and even after injecting noise, we should still not select an illegal move
for _ in range(10):
root.inject_noise()
leaf = root.select_leaf()
self.assertNotEqual(leaf.fmove, 1)
示例4: test_never_select_illegal_moves
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_never_select_illegal_moves(self):
probs = np.array([0.02] * (go.N * go.N + 1))
# let's say the NN were to accidentally put a high weight on an illegal move
probs[1] = 0.99
root = mcts.MCTSNode(SEND_TWO_RETURN_ONE)
root.incorporate_results(probs, 0, root)
# and let's say the root were visited a lot of times, which pumps up the
# action score for unvisited moves...
root.N = 100000
root.child_N[root.position.all_legal_moves()] = 10000
# this should not throw an error...
leaf = root.select_leaf()
# the returned leaf should not be the illegal move
self.assertNotEqual(1, leaf.fmove)
# and even after injecting noise, we should still not select an illegal move
for i in range(10):
root.inject_noise()
leaf = root.select_leaf()
self.assertNotEqual(1, leaf.fmove)
示例5: initialize_game
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def initialize_game(self, position=None):
if position is None:
position = go.Position()
self.root = MCTSNode(position)
self.result = 0
self.result_string = None
self.comments = []
self.searches_pi = []
self.qs = []
示例6: test_action_flipping
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_action_flipping(self):
np.random.seed(1)
probs = np.array([.02] * (go.N * go.N + 1))
probs = probs + np.random.random([go.N * go.N + 1]) * 0.001
black_root = MCTSNode(go.Position())
white_root = MCTSNode(go.Position(to_play=go.WHITE))
black_root.select_leaf().incorporate_results(probs, 0, black_root)
white_root.select_leaf().incorporate_results(probs, 0, white_root)
# No matter who is to play, when we know nothing else, the priors
# should be respected, and the same move should be picked
black_leaf = black_root.select_leaf()
white_leaf = white_root.select_leaf()
self.assertEqual(black_leaf.fmove, white_leaf.fmove)
self.assertEqualNPArray(
black_root.child_action_score, white_root.child_action_score)
示例7: test_select_leaf
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_select_leaf(self):
flattened = coords.to_flat(coords.from_kgs('D9'))
probs = np.array([.02] * (go.N * go.N + 1))
probs[flattened] = 0.4
root = MCTSNode(SEND_TWO_RETURN_ONE)
root.select_leaf().incorporate_results(probs, 0, root)
self.assertEqual(root.position.to_play, go.WHITE)
self.assertEqual(root.select_leaf(), root.children[flattened])
示例8: test_do_not_explore_past_finish
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_do_not_explore_past_finish(self):
probs = np.array([0.02] * (go.N * go.N + 1), dtype=np.float32)
root = MCTSNode(go.Position())
root.select_leaf().incorporate_results(probs, 0, root)
first_pass = root.maybe_add_child(coords.to_flat(None))
first_pass.incorporate_results(probs, 0, root)
second_pass = first_pass.maybe_add_child(coords.to_flat(None))
with self.assertRaises(AssertionError):
second_pass.incorporate_results(probs, 0, root)
node_to_explore = second_pass.select_leaf()
# should just stop exploring at the end position.
self.assertEqual(node_to_explore, second_pass)
示例9: test_add_child_idempotency
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_add_child_idempotency(self):
root = MCTSNode(go.Position())
child = root.maybe_add_child(17)
current_children = copy.copy(root.children)
child2 = root.maybe_add_child(17)
self.assertEqual(child, child2)
self.assertEqual(current_children, root.children)
示例10: test_dont_pick_unexpanded_child
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_dont_pick_unexpanded_child(self):
probs = np.array([0.001] * (go.N * go.N + 1))
# make one move really likely so that tree search goes down that path twice
# even with a virtual loss
probs[17] = 0.999
root = MCTSNode(go.Position())
root.incorporate_results(probs, 0, root)
leaf1 = root.select_leaf()
self.assertEqual(leaf1.fmove, 17)
leaf1.add_virtual_loss(up_to=root)
# the second select_leaf pick should return the same thing, since the child
# hasn't yet been sent to neural net for eval + result incorporation
leaf2 = root.select_leaf()
self.assertIs(leaf1, leaf2)
示例11: test_add_child
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_add_child(self):
root = MCTSNode(go.Position())
child = root.maybe_add_child(17)
self.assertIn(17, root.children)
self.assertEqual(child.parent, root)
self.assertEqual(child.fmove, 17)
示例12: initialize_game
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def initialize_game(self, position=None):
if position is None:
position = go.Position(self.board_size)
self.root = MCTSNode(self.board_size, position)
self.result = 0
self.result_string = None
self.comments = []
self.searches_pi = []
self.qs = []
示例13: test_select_leaf
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_select_leaf(self):
flattened = coords.to_flat(utils_test.BOARD_SIZE, coords.from_kgs(
utils_test.BOARD_SIZE, 'D9'))
probs = np.array([.02] * (
utils_test.BOARD_SIZE * utils_test.BOARD_SIZE + 1))
probs[flattened] = 0.4
root = MCTSNode(utils_test.BOARD_SIZE, SEND_TWO_RETURN_ONE)
root.select_leaf().incorporate_results(probs, 0, root)
self.assertEqual(root.position.to_play, go.WHITE)
self.assertEqual(root.select_leaf(), root.children[flattened])
示例14: test_do_not_explore_past_finish
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_do_not_explore_past_finish(self):
probs = np.array([0.02] * (
utils_test.BOARD_SIZE * utils_test.BOARD_SIZE + 1), dtype=np.float32)
root = MCTSNode(utils_test.BOARD_SIZE, go.Position(utils_test.BOARD_SIZE))
root.select_leaf().incorporate_results(probs, 0, root)
first_pass = root.maybe_add_child(
coords.to_flat(utils_test.BOARD_SIZE, None))
first_pass.incorporate_results(probs, 0, root)
second_pass = first_pass.maybe_add_child(
coords.to_flat(utils_test.BOARD_SIZE, None))
with self.assertRaises(AssertionError):
second_pass.incorporate_results(probs, 0, root)
node_to_explore = second_pass.select_leaf()
# should just stop exploring at the end position.
self.assertEqual(node_to_explore, second_pass)
示例15: test_add_child_idempotency
# 需要導入模塊: import mcts [as 別名]
# 或者: from mcts import MCTSNode [as 別名]
def test_add_child_idempotency(self):
root = MCTSNode(utils_test.BOARD_SIZE, go.Position(utils_test.BOARD_SIZE))
child = root.maybe_add_child(17)
current_children = copy.copy(root.children)
child2 = root.maybe_add_child(17)
self.assertEqual(child, child2)
self.assertEqual(current_children, root.children)