本文整理匯總了Python中mayavi.mlab.show方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.show方法的具體用法?Python mlab.show怎麽用?Python mlab.show使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mayavi.mlab
的用法示例。
在下文中一共展示了mlab.show方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: surface_3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def surface_3d():
"""
使用Mayavi將二維數組繪製成3D曲麵 x * exp(x**2 - y**2)
:return:
"""
import numpy as np
# create data
x, y = np.ogrid[-2:2:20j, -2:2:20j]
z = x * np.exp(- x ** 2 - y ** 2)
# view it
from mayavi import mlab
# 繪製一個三維空間中的曲麵
pl = mlab.surf(x, y, z, warp_scale="auto")
# 在三維空間中添加坐標軸
mlab.axes(xlabel='x', ylabel='y', zlabel='z')
# 在三維空間中添加曲麵區域的外框
mlab.outline(pl)
mlab.show()
示例2: surface_spherical_harmonic
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def surface_spherical_harmonic():
# Create the data.
from numpy import pi, sin, cos, mgrid
dphi, dtheta = pi / 250.0, pi / 250.0
[phi, theta] = mgrid[0:pi + dphi * 1.5:dphi, 0:2 * pi + dtheta * 1.5:dtheta]
m0 = 4
m1 = 3
m2 = 2
m3 = 3
m4 = 6
m5 = 2
m6 = 6
m7 = 4
r = sin(m0 * phi) ** m1 + cos(m2 * phi) ** m3 + sin(m4 * theta) ** m5 + cos(m6 * theta) ** m7
x = r * sin(phi) * cos(theta)
y = r * cos(phi)
z = r * sin(phi) * sin(theta)
# View it.
from mayavi import mlab
mlab.mesh(x, y, z)
mlab.show()
示例3: test_plot3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def test_plot3d():
import numpy
from mayavi import mlab
"""Generates a pretty set of lines."""
n_mer, n_long = 6, 11
pi = numpy.pi
dphi = pi / 1000.0
phi = numpy.arange(0.0, 2 * pi + 0.5 * dphi, dphi)
mu = phi * n_mer
x = numpy.cos(mu) * (1 + numpy.cos(n_long * mu / n_mer) * 0.5)
y = numpy.sin(mu) * (1 + numpy.cos(n_long * mu / n_mer) * 0.5)
z = numpy.sin(n_long * mu / n_mer) * 0.5
l = mlab.plot3d(x, y, z, numpy.sin(mu), tube_radius=0.025, colormap='Spectral')
mlab.show()
示例4: viz_kitti_video
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def viz_kitti_video():
video_path = os.path.join(ROOT_DIR, 'dataset/2011_09_26/')
dataset = kitti_object_video(\
os.path.join(video_path, '2011_09_26_drive_0023_sync/image_02/data'),
os.path.join(video_path, '2011_09_26_drive_0023_sync/velodyne_points/data'),
video_path)
print(len(dataset))
for i in range(len(dataset)):
img = dataset.get_image(0)
pc = dataset.get_lidar(0)
Image.fromarray(img).show()
draw_lidar(pc)
raw_input()
pc[:,0:3] = dataset.get_calibration().project_velo_to_rect(pc[:,0:3])
draw_lidar(pc)
raw_input()
return
示例5: show_lidar_on_image
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def show_lidar_on_image(pc_velo, img, calib, img_width, img_height):
''' Project LiDAR points to image '''
imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(pc_velo,
calib, 0, 0, img_width, img_height, True)
imgfov_pts_2d = pts_2d[fov_inds,:]
imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)
import matplotlib.pyplot as plt
cmap = plt.cm.get_cmap('hsv', 256)
cmap = np.array([cmap(i) for i in range(256)])[:,:3]*255
for i in range(imgfov_pts_2d.shape[0]):
depth = imgfov_pc_rect[i,2]
color = cmap[int(640.0/depth),:]
cv2.circle(img, (int(np.round(imgfov_pts_2d[i,0])),
int(np.round(imgfov_pts_2d[i,1]))),
2, color=tuple(color), thickness=-1)
Image.fromarray(img).show()
return img
示例6: display_gripper_on_object
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def display_gripper_on_object(obj_, grasp_):
"""display both object and gripper using mayavi"""
# transfer wrong was fixed by the previews comment of meshpy modification.
# gripper_name = 'robotiq_85'
# home_dir = os.environ['HOME']
# gripper = RobotGripper.load(gripper_name, home_dir + "/code/grasp-pointnet/dex-net/data/grippers")
# stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
# T_obj_world = RigidTransform(from_frame='obj', to_frame='world')
t_obj_gripper = grasp_.gripper_pose(gripper)
stable_pose = t_obj_gripper
grasp_ = grasp_.perpendicular_table(stable_pose)
Vis.figure(bgcolor=(1, 1, 1), size=(1000, 1000))
Vis.gripper_on_object(gripper, grasp_, obj_,
gripper_color=(0.25, 0.25, 0.25),
# stable_pose=stable_pose, # .T_obj_world,
plot_table=False)
Vis.show()
示例7: remove_white_pixel
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def remove_white_pixel(msg, points_, vis=False):
points_with_c_ = pointclouds.pointcloud2_to_array(msg)
points_with_c_ = pointclouds.split_rgb_field(points_with_c_)
r = np.asarray(points_with_c_['r'], dtype=np.uint32)
g = np.asarray(points_with_c_['g'], dtype=np.uint32)
b = np.asarray(points_with_c_['b'], dtype=np.uint32)
rgb_colors = np.vstack([r, g, b]).T
# rgb = rgb_colors.astype(np.float) / 255
ind_good_points_ = np.sum(rgb_colors[:] < 210, axis=-1) == 3
ind_good_points_ = np.where(ind_good_points_ == 1)[0]
new_points_ = points_[ind_good_points_]
if vis:
p = points_
mlab.points3d(p[:, 0], p[:, 1], p[:, 2], scale_factor=0.002, color=(1, 0, 0))
p = new_points_
mlab.points3d(p[:, 0], p[:, 1], p[:, 2], scale_factor=0.002, color=(0, 0, 1))
mlab.points3d(0, 0, 0, scale_factor=0.01, color=(0, 1, 0)) # plot 0 point
mlab.show()
return new_points_
示例8: main
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def main():
mu = np.array([1, 10, 20])
sigma = np.matrix([[20, 10, 10],
[10, 25, 1],
[10, 1, 50]])
np.random.seed(100)
data = np.random.multivariate_normal(mu, sigma, 1000)
values = data.T
kde = stats.gaussian_kde(values)
# Create a regular 3D grid with 50 points in each dimension
xmin, ymin, zmin = data.min(axis=0)
xmax, ymax, zmax = data.max(axis=0)
xi, yi, zi = np.mgrid[xmin:xmax:50j, ymin:ymax:50j, zmin:zmax:50j]
# Evaluate the KDE on a regular grid...
coords = np.vstack([item.ravel() for item in [xi, yi, zi]])
density = kde(coords).reshape(xi.shape)
# Visualize the density estimate as isosurfaces
mlab.contour3d(xi, yi, zi, density, opacity=0.5)
mlab.axes()
mlab.show()
示例9: viz_kitti_video
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def viz_kitti_video():
video_path = os.path.join(ROOT_DIR, 'dataset\\2011_09_26\\')
dataset = kitti_object_video(\
os.path.join(video_path, '2011_09_26_drive_0023_sync\\image_02\\data'),
os.path.join(video_path, '2011_09_26_drive_0023_sync\\velodyne_points\\data'),
video_path)
print(len(dataset))
for i in range(len(dataset)):
img = dataset.get_image(0)
pc = dataset.get_lidar(0)
Image.fromarray(img).show()
draw_lidar(pc)
raw_input()
pc[:,0:3] = dataset.get_calibration().project_velo_to_rect(pc[:,0:3])
draw_lidar(pc)
raw_input()
return
示例10: show
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def show(plane, expected_n_contours):
P = meshcut.cross_section_mesh(mesh, plane)
colors = [
(0, 1, 1),
(1, 0, 1),
(0, 0, 1)
]
print("num contours : ", len(P), ' expected : ', expected_n_contours)
if True:
utils.trimesh3d(mesh.verts, mesh.tris, color=(1, 1, 1),
opacity=0.5)
utils.show_plane(plane.orig, plane.n, scale=1, color=(1, 0, 0),
opacity=0.5)
for p, color in zip(P, itertools.cycle(colors)):
p = np.array(p)
mlab.plot3d(p[:, 0], p[:, 1], p[:, 2], tube_radius=None,
line_width=3.0, color=color)
return P
##
# This will align the plane with some edges, so this is a good test
# for vertices intersection handling
示例11: show
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def show(plane):
P = meshcut.cross_section_mesh(mesh, plane)
colors = [
(0, 1, 1),
(1, 0, 1),
(0, 0, 1)
]
print("num contours : ", len(P))
if True:
utils.trimesh3d(mesh.verts, mesh.tris, color=(1, 1, 1),
opacity=0.5, representation='wireframe')
utils.show_plane(plane.orig, plane.n, scale=1, color=(1, 0, 0),
opacity=0.5)
for p, color in zip(P, itertools.cycle(colors)):
p = np.array(p)
mlab.plot3d(p[:, 0], p[:, 1], p[:, 2], tube_radius=None,
line_width=3.0, color=color)
return P
##
示例12: render_body
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def render_body(self):
from mayavi import mlab
body = self.to_body()
mask, bounds = body.get_seeded_component(CONFIG.postprocessing.closing_shape)
fig = mlab.figure(size=(1280, 720))
if self.target is not None:
target_grid = mlab.pipeline.scalar_field(self.target)
target_grid.spacing = CONFIG.volume.resolution
target_grid = mlab.pipeline.iso_surface(target_grid, contours=[0.5], color=(1, 0, 0), opacity=0.1)
grid = mlab.pipeline.scalar_field(mask)
grid.spacing = CONFIG.volume.resolution
mlab.pipeline.iso_surface(grid, color=(0, 1, 0), contours=[0.5], opacity=0.6)
mlab.orientation_axes(figure=fig, xlabel='Z', zlabel='X')
mlab.view(azimuth=45, elevation=30, focalpoint='auto', roll=90, figure=fig)
mlab.show()
示例13: show_lidar_on_image
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def show_lidar_on_image(pc_velo, img, calib, img_width, img_height):
''' Project LiDAR points to image '''
imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(pc_velo,
calib, 0, 0, img_width, img_height, True)
imgfov_pts_2d = pts_2d[fov_inds, :]
imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)
import matplotlib.pyplot as plt
cmap = plt.cm.get_cmap('hsv', 256)
cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255
for i in range(imgfov_pts_2d.shape[0]):
depth = imgfov_pc_rect[i, 2]
color = cmap[int(640.0 / depth), :]
cv2.circle(img, (int(np.round(imgfov_pts_2d[i, 0])),
int(np.round(imgfov_pts_2d[i, 1]))),
2, color=tuple(color), thickness=-1)
Image.fromarray(img).show()
return img
示例14: viz_kitti_video
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def viz_kitti_video():
video_path = os.path.join(ROOT_DIR, 'dataset/2011_09_26/')
dataset = kitti_object_video(
os.path.join(video_path, '2011_09_26_drive_0023_sync/image_02/data'),
os.path.join(video_path, '2011_09_26_drive_0023_sync/velodyne_points/data'),
video_path)
print(len(dataset))
for i in range(len(dataset)):
img = dataset.get_image(0)
pc = dataset.get_lidar(0)
Image.fromarray(img).show()
draw_lidar(pc)
input()
pc[:, 0:3] = dataset.get_calibration().project_velo_to_rect(pc[:, 0:3])
draw_lidar(pc)
input()
return
示例15: plot_mcontour
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import show [as 別名]
def plot_mcontour(self, ndim0, ndim1, z, show_mode):
"use mayavi.mlab to plot contour."
if not mayavi_installed:
self.__logger.info("Mayavi is not installed on your device.")
return
#do 2d interpolation
#get slice object
s = np.s_[0:ndim0:1, 0:ndim1:1]
x, y = np.ogrid[s]
mx, my = np.mgrid[s]
#use cubic 2d interpolation
interpfunc = interp2d(x, y, z, kind='cubic')
newx = np.linspace(0, ndim0, 600)
newy = np.linspace(0, ndim1, 600)
newz = interpfunc(newx, newy)
#mlab
face = mlab.surf(newx, newy, newz, warp_scale=2)
mlab.axes(xlabel='x', ylabel='y', zlabel='z')
mlab.outline(face)
#save or show
if show_mode == 'show':
mlab.show()
elif show_mode == 'save':
mlab.savefig('mlab_contour3d.png')
else:
raise ValueError('Unrecognized show mode parameter : ' +
show_mode)
return