本文整理匯總了Python中mayavi.mlab.savefig方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.savefig方法的具體用法?Python mlab.savefig怎麽用?Python mlab.savefig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mayavi.mlab
的用法示例。
在下文中一共展示了mlab.savefig方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_mcontour
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def plot_mcontour(self, ndim0, ndim1, z, show_mode):
"use mayavi.mlab to plot contour."
if not mayavi_installed:
self.__logger.info("Mayavi is not installed on your device.")
return
#do 2d interpolation
#get slice object
s = np.s_[0:ndim0:1, 0:ndim1:1]
x, y = np.ogrid[s]
mx, my = np.mgrid[s]
#use cubic 2d interpolation
interpfunc = interp2d(x, y, z, kind='cubic')
newx = np.linspace(0, ndim0, 600)
newy = np.linspace(0, ndim1, 600)
newz = interpfunc(newx, newy)
#mlab
face = mlab.surf(newx, newy, newz, warp_scale=2)
mlab.axes(xlabel='x', ylabel='y', zlabel='z')
mlab.outline(face)
#save or show
if show_mode == 'show':
mlab.show()
elif show_mode == 'save':
mlab.savefig('mlab_contour3d.png')
else:
raise ValueError('Unrecognized show mode parameter : ' +
show_mode)
return
示例2: plot_field
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def plot_field(self, **kwargs):
"plot scalar field for elf data"
if not mayavi_installed:
self.__logger.warning("Mayavi is not installed on your device.")
return
# set parameters
vmin = kwargs['vmin'] if 'vmin' in kwargs else 0.0
vmax = kwargs['vmax'] if 'vmax' in kwargs else 1.0
axis_cut = kwargs['axis_cut'] if 'axis_cut' in kwargs else 'z'
nct = kwargs['nct'] if 'nct' in kwargs else 5
widths = kwargs['widths'] if 'widths' in kwargs else (1, 1, 1)
elf_data, grid = self.expand_data(self.elf_data, self.grid, widths)
#create pipeline
field = mlab.pipeline.scalar_field(elf_data) # data source
mlab.pipeline.volume(field, vmin=vmin, vmax=vmax) # put data into volumn to visualize
#cut plane
if axis_cut in ['Z', 'z']:
plane_orientation = 'z_axes'
elif axis_cut in ['Y', 'y']:
plane_orientation = 'y_axes'
elif axis_cut in ['X', 'x']:
plane_orientation = 'x_axes'
cut = mlab.pipeline.scalar_cut_plane(
field.children[0], plane_orientation=plane_orientation)
cut.enable_contours = True # 開啟等值線顯示
cut.contour.number_of_contours = nct
mlab.show()
#mlab.savefig('field.png', size=(2000, 2000))
return
示例3: run_plots
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def run_plots(DataDirectory,Base_file):
root = DataDirectory+Base_file
filenames = get_filenames(root)
counter = 0
# create the plot for the initial raster
initial_file = filenames[0]
# read in the raster
raster = IO.ReadRasterArrayBlocks(initial_file)
f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
#mlab.outline(color=(0,0,0))
#mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])
#@mlab.animate(delay=10)
#def anim():
# now loop through each file and update the z values
for fname in filenames:
this_rast = IO.ReadRasterArrayBlocks(fname)
s.mlab_source.scalars = this_rast
#f.scene.render()
#
mlab.savefig(fname[:-4]+'_3d.png')
#mlab.clf()
# for (x, y, z) in zip(xs, ys, zs):
# print('Updating scene...')
# plt.mlab_source.set(x=x, y=y, z=z)
# yield
示例4: mayavi_scraper
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def mayavi_scraper(block, block_vars, gallery_conf):
"""Scrape Mayavi images.
Parameters
----------
block : tuple
A tuple containing the (label, content, line_number) of the block.
block_vars : dict
Dict of block variables.
gallery_conf : dict
Contains the configuration of Sphinx-Gallery
Returns
-------
rst : str
The ReSTructuredText that will be rendered to HTML containing
the images. This is often produced by :func:`figure_rst`.
"""
from mayavi import mlab
image_path_iterator = block_vars['image_path_iterator']
image_paths = list()
e = mlab.get_engine()
for scene, image_path in zip(e.scenes, image_path_iterator):
mlab.savefig(image_path, figure=scene)
# make sure the image is not too large
scale_image(image_path, image_path, 850, 999)
if 'images' in gallery_conf['compress_images']:
optipng(image_path, gallery_conf['compress_images_args'])
image_paths.append(image_path)
mlab.close(all=True)
return figure_rst(image_paths, gallery_conf['src_dir'])
示例5: PlotNewtonRaphsonConvergence
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def PlotNewtonRaphsonConvergence(self, increment=None, figure=None, show_plot=True, save=False, filename=None):
"""Plots convergence of Newton-Raphson for a given increment"""
if self.fem_solver is None:
raise ValueError("FEM solver not set for post-processing")
if increment == None:
increment = len(self.fem_solver.NRConvergence)-1
import matplotlib.pyplot as plt
if figure is None:
figure = plt.figure()
plt.plot(np.log10(self.fem_solver.NRConvergence['Increment_'+str(increment)]),'-ko')
axis_font = {'size':'18'}
plt.xlabel(r'$No\;\; of\;\; Iterations$', **axis_font)
plt.ylabel(r'$log_{10}|Residual|$', **axis_font)
plt.grid('on')
if save:
if filename is None:
warn("No filename provided. I am going to write one in the current directory")
filename = PWD(__file__) + '/output.eps'
plt.savefig(filename, format='eps', dpi=500)
if show_plot:
plt.show()
示例6: _save_all_fired
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def _save_all_fired(self):
file_dialog = DirectoryDialog(action = 'open', title = 'Select Directory')
if file_dialog.open() == OK:
out_path = file_dialog.path
if self.display_all:
items = [(None, k) for k in xrange(self._max_weight + 1)]
else:
items = product(self._names, xrange(self._max_weight + 1))
for name, k in items:
if name is not None:
self.selected_mesh = name
self.weight_index = k
mlab.savefig(path.join(out_path, "%s_%03d.png" % (name, k)))
示例7: plot_contour
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def plot_contour(self, ndim0, ndim1, z, show_mode):
'''
ndim0: int, point number on x-axis
ndim1: int, point number on y-axis
z : 2darray, values on plane perpendicular to z axis
'''
#do 2d interpolation
#get slice object
s = np.s_[0:ndim0:1, 0:ndim1:1]
x, y = np.ogrid[s]
self.__logger.info('z shape = %s, x shape = %s, y shape = %s',
str(z.shape), str(x.shape), str(y.shape))
mx, my = np.mgrid[s]
#use cubic 2d interpolation
interpfunc = interp2d(x, y, z, kind='cubic')
newx = np.linspace(0, ndim0, 600)
newy = np.linspace(0, ndim1, 600)
#-----------for plot3d---------------------
ms = np.s_[0:ndim0:600j, 0:ndim1:600j] # |
newmx, newmy = np.mgrid[ms] # |
#-----------for plot3d---------------------
newz = interpfunc(newx, newy)
#plot 2d contour map
fig2d_1, fig2d_2, fig2d_3 = plt.figure(), plt.figure(), plt.figure()
ax1 = fig2d_1.add_subplot(1, 1, 1)
extent = [np.min(newx), np.max(newx), np.min(newy), np.max(newy)]
img = ax1.imshow(newz, extent=extent, origin='lower')
#coutour plot
ax2 = fig2d_2.add_subplot(1, 1, 1)
cs = ax2.contour(newx.reshape(-1), newy.reshape(-1), newz, 20, extent=extent)
ax2.clabel(cs)
plt.colorbar(mappable=img)
# contourf plot
ax3 = fig2d_3.add_subplot(1, 1, 1)
ax3.contourf(newx.reshape(-1), newy.reshape(-1), newz, 20, extent=extent)
#3d plot
fig3d = plt.figure(figsize=(12, 8))
ax3d = fig3d.add_subplot(111, projection='3d')
ax3d.plot_surface(newmx, newmy, newz, cmap=plt.cm.RdBu_r)
#save or show
if show_mode == 'show':
plt.show()
elif show_mode == 'save':
fig2d_1.savefig('surface2d.png', dpi=500)
fig2d_2.savefig('contour2d.png', dpi=500)
fig2d_3.savefig('contourf2d.png', dpi=500)
fig3d.savefig('surface3d.png', dpi=500)
else:
raise ValueError('Unrecognized show mode parameter : ' +
show_mode)
return
示例8: show_selected_grasps_with_color
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def show_selected_grasps_with_color(m, ply_name_, title, obj_):
m_good = m[m[:, 1] <= 0.4]
m_good = m_good[np.random.choice(len(m_good), size=25, replace=True)]
m_bad = m[m[:, 1] >= 1.8]
m_bad = m_bad[np.random.choice(len(m_bad), size=25, replace=True)]
collision_grasp_num = 0
if save_fig or show_fig:
# fig 1: good grasps
mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
mlab.pipeline.surface(mlab.pipeline.open(ply_name_))
for a in m_good:
# display_gripper_on_object(obj, a[0]) # real gripper
collision_free = display_grasps(a[0], obj_, color='d') # simulated gripper
if not collision_free:
collision_grasp_num += 1
if save_fig:
mlab.savefig("good_"+title+".png")
mlab.close()
elif show_fig:
mlab.title(title, size=0.5)
# fig 2: bad grasps
mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
mlab.pipeline.surface(mlab.pipeline.open(ply_name_))
for a in m_bad:
# display_gripper_on_object(obj, a[0]) # real gripper
collision_free = display_grasps(a[0], obj_, color=(1, 0, 0))
if not collision_free:
collision_grasp_num += 1
if save_fig:
mlab.savefig("bad_"+title+".png")
mlab.close()
elif show_fig:
mlab.title(title, size=0.5)
mlab.show()
elif generate_new_file:
# only to calculate collision:
collision_grasp_num = 0
ind_good_grasp_ = []
for i_ in range(len(m)):
collision_free = display_grasps(m[i_][0], obj_, color=(1, 0, 0))
if not collision_free:
collision_grasp_num += 1
else:
ind_good_grasp_.append(i_)
collision_grasp_num = str(collision_grasp_num)
collision_grasp_num = (4-len(collision_grasp_num))*" " + collision_grasp_num
print("collision_grasp_num =", collision_grasp_num, "| object name:", title)
return ind_good_grasp_
示例9: save_figures
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def save_figures(image_path, fig_count, gallery_conf):
"""Save all open matplotlib figures of the example code-block
Parameters
----------
image_path : str
Path where plots are saved (format string which accepts figure number)
fig_count : int
Previous figure number count. Figure number add from this number
Returns
-------
list of strings containing the full path to each figure
"""
figure_list = []
fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers()
for fig_mngr in fig_managers:
# Set the fig_num figure as the current figure as we can't
# save a figure that's not the current figure.
fig = plt.figure(fig_mngr.num)
kwargs = {}
to_rgba = matplotlib.colors.colorConverter.to_rgba
for attr in ['facecolor', 'edgecolor']:
fig_attr = getattr(fig, 'get_' + attr)()
default_attr = matplotlib.rcParams['figure.' + attr]
if to_rgba(fig_attr) != to_rgba(default_attr):
kwargs[attr] = fig_attr
current_fig = image_path.format(fig_count + fig_mngr.num)
fig.savefig(current_fig, **kwargs)
figure_list.append(current_fig)
if gallery_conf.get('find_mayavi_figures', False):
from mayavi import mlab
e = mlab.get_engine()
last_matplotlib_fig_num = len(figure_list)
total_fig_num = last_matplotlib_fig_num + len(e.scenes)
mayavi_fig_nums = range(last_matplotlib_fig_num, total_fig_num)
for scene, mayavi_fig_num in zip(e.scenes, mayavi_fig_nums):
current_fig = image_path.format(mayavi_fig_num)
mlab.savefig(current_fig, figure=scene)
# make sure the image is not too large
scale_image(current_fig, current_fig, 850, 999)
figure_list.append(current_fig)
mlab.close(all=True)
return figure_list
示例10: plot
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import savefig [as 別名]
def plot(self, figname=None, size=(300, 325), view=(30, 30), color=(1.0, 1.0, 1.0)):
fig = mlab.figure(size=size)
figure = mlab.gcf()
fig.scene.disable_render = True
figure.scene.background = (0.0, 0.0, 0.0)
mlab.view(0, 90, distance=0.2)
assert (self.structure.natom > 0)
x = self.structure.positions[:, 0]
y = self.structure.positions[:, 1]
z = self.structure.positions[:, 2]
cr = covalent_radius(self.structure.symbols)
s = np.apply_along_axis(np.linalg.norm, 1, self.structure.positions)
mlab.points3d(x, y, z, s, scale_factor=1.0, resolution=8, opacity=1.0,
color=color,
scale_mode='none')
if self.structure.is_crystal:
frame, line1, line2, line3 = self.structure.get_cell().get_path()
mlab.plot3d(frame[:, 0], frame[:, 1], frame[:, 2], tube_radius=.02, color=(1, 1, 1))
mlab.plot3d(line1[:, 0], line1[:, 1], line1[:, 2], tube_radius=.02, color=(1, 1, 1))
mlab.plot3d(line2[:, 0], line2[:, 1], line2[:, 2], tube_radius=.02, color=(1, 1, 1))
mlab.plot3d(line3[:, 0], line3[:, 1], line3[:, 2], tube_radius=.02, color=(1, 1, 1))
else:
for i in range(self.structure.natom - 1):
for j in range(i + 1, self.structure.natom):
vector = self.structure.positions[i] - self.structure.positions[j]
mvector = np.linalg.norm(vector)
uvector = 1.0 / mvector * vector
if 2 * mvector < covalent_radius(self.structure.symbols[i]) + \
covalent_radius(self.structure.symbols[j]):
pair = np.concatenate(
(self.structure.positions[i] - 0.1 * uvector,
self.structure.positions[j] + 0.1 * uvector)).reshape((-1, 3))
mlab.plot3d(pair[:, 0], pair[:, 1], pair[:, 2], tube_radius=0.15, opacity=1.0, color=(1, 1, 1))
mlab.view(distance=12.0)
fig.scene.disable_render = False
if figname is not None:
mlab.savefig(figname)
return figure