本文整理匯總了Python中mayavi.mlab.quiver3d方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.quiver3d方法的具體用法?Python mlab.quiver3d怎麽用?Python mlab.quiver3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mayavi.mlab
的用法示例。
在下文中一共展示了mlab.quiver3d方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: show_grasp_norm_oneside
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import quiver3d [as 別名]
def show_grasp_norm_oneside(self, grasp_bottom_center,
grasp_normal, grasp_axis, minor_pc, scale_factor=0.001):
# un1 = grasp_bottom_center + 0.5 * grasp_axis * self.gripper.max_width
un2 = grasp_bottom_center
# un3 = grasp_bottom_center + 0.5 * minor_pc * self.gripper.max_width
# un4 = grasp_bottom_center
# un5 = grasp_bottom_center + 0.5 * grasp_normal * self.gripper.max_width
# un6 = grasp_bottom_center
self.show_points(grasp_bottom_center, color='g', scale_factor=scale_factor * 4)
# self.show_points(un1, scale_factor=scale_factor * 4)
# self.show_points(un3, scale_factor=scale_factor * 4)
# self.show_points(un5, scale_factor=scale_factor * 4)
# self.show_line(un1, un2, color='g', scale_factor=scale_factor) # binormal/ major pc
# self.show_line(un3, un4, color='b', scale_factor=scale_factor) # minor pc
# self.show_line(un5, un6, color='r', scale_factor=scale_factor) # approach normal
mlab.quiver3d(un2[0], un2[1], un2[2], grasp_axis[0], grasp_axis[1], grasp_axis[2],
scale_factor=.03, line_width=0.25, color=(0, 1, 0), mode='arrow')
mlab.quiver3d(un2[0], un2[1], un2[2], minor_pc[0], minor_pc[1], minor_pc[2],
scale_factor=.03, line_width=0.1, color=(0, 0, 1), mode='arrow')
mlab.quiver3d(un2[0], un2[1], un2[2], grasp_normal[0], grasp_normal[1], grasp_normal[2],
scale_factor=.03, line_width=0.05, color=(1, 0, 0), mode='arrow')
示例2: _plot_coord_system
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import quiver3d [as 別名]
def _plot_coord_system(points, dim1, dim2, dim3, scale=0.001, n_ori=3):
"""Useful for checking the results of _make_radial_coord_system.
Usage:
>>> _, origin = _fit_sphere(fwd['source_rr'])
... rad, tan1, tan2 = _make_radial_coord_system(fwd['source_rr'], origin)
... _plot_coord_system(fwd['source_rr'], rad, tan1, tan2)
Use ``scale`` to control the size of the arrows.
"""
from mayavi import mlab
f = mlab.figure(size=(600, 600))
red, blue, black = (1, 0, 0), (0, 0, 1), (0, 0, 0)
if n_ori == 3:
mlab.quiver3d(points[:, 0], points[:, 1], points[:, 2],
dim1[:, 0], dim1[:, 1], dim1[:, 2], scale_factor=scale,
color=red)
if n_ori > 1:
mlab.quiver3d(points[:, 0], points[:, 1], points[:, 2],
dim2[:, 0], dim2[:, 1], dim2[:, 2], scale_factor=scale,
color=blue)
mlab.quiver3d(points[:, 0], points[:, 1], points[:, 2],
dim3[:, 0], dim3[:, 1], dim3[:, 2], scale_factor=scale,
color=black)
return f
示例3: test_surface_normals
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import quiver3d [as 別名]
def test_surface_normals(plot=False, skip_asserts=False,
write_reference=False):
"Test the surface normals of a horseshoe mesh"
sim = openmodes.Simulation()
mesh = sim.load_mesh(osp.join(mesh_dir, 'horseshoe_rect.msh'))
part = sim.place_part(mesh)
basis = sim.basis_container[part]
r, rho = basis.integration_points(mesh.nodes, triangle_centres)
normals = mesh.surface_normals
r = r.reshape((-1, 3))
if write_reference:
write_2d_real(osp.join(reference_dir, 'surface_r.txt'), r)
write_2d_real(osp.join(reference_dir, 'surface_normals.txt'), normals)
r_ref = read_2d_real(osp.join(reference_dir, 'surface_r.txt'))
normals_ref = read_2d_real(osp.join(reference_dir, 'surface_normals.txt'))
if not skip_asserts:
assert_allclose(r, r_ref)
assert_allclose(normals, normals_ref)
if plot:
from mayavi import mlab
mlab.figure()
mlab.quiver3d(r[:, 0], r[:, 1], r[:, 2],
normals[:, 0], normals[:, 1], normals[:, 2],
mode='cone')
mlab.view(distance='auto')
mlab.show()
示例4: show_correspondence
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import quiver3d [as 別名]
def show_correspondence(verts1, tris1, verts2, tris2, ij, points=5, show_spheres=True,
scalars=None, colormap='gist_rainbow', blend_factor=0.9,
compute_blend_weights=compute_fake_weights,
color_only_correspondences=1, color_no_correspondence=(0,0,0),
offset_factor=(1.5, 0., 0.), block=True,
):
mlab.figure(bgcolor=(1,1,1))
# select sparse points to visualize
if type(points) is int:
i_sel = [0]
geo = GeodesicDistanceComputation(verts1, tris1)
for n in xrange(points-1):
d = geo(ij[i_sel,0])[ij[:,0]]
i_sel.append(d.argmax())
else:
i_sel = points
#i_sel = np.random.randint(0, len(ij), 10)
ij_sel = np.column_stack((ij[i_sel,0], ij[i_sel, 1]))
# color per marker - value between 0 and 1 which is passed through a color map later on
color = np.linspace(0, 1, len(ij_sel))
# prepare visualization
offset = verts2.ptp(axis=0) * offset_factor#(verts2[:,0].ptp() * offset_factor, 0, 0)
p1 = verts1[ij_sel[:,0]]
p2 = verts2[ij_sel[:,1]] + offset
v = p2 - p1
# visualize!
# correspondence arrows
quiv = mlab.quiver3d(p1[:,0], p1[:,1], p1[:,2], v[:,0], v[:,1], v[:,2],
scale_factor=1, line_width=2, mode='2ddash', scale_mode='vector',
scalars=color, colormap=colormap)
quiv.glyph.color_mode = 'color_by_scalar'
# show sparse points as spheres
if show_spheres:
h = veclen(verts1[tris1[:,0]] - verts1[tris1[:,1]]).mean() * 2
mlab.points3d(p1[:,0], p1[:,1], p1[:,2], color, scale_mode='none',
scale_factor=h, colormap=colormap, resolution=32)
mlab.points3d(p2[:,0], p2[:,1], p2[:,2], color, scale_mode='none',
scale_factor=h, colormap=colormap, resolution=32)
# make colors for the meshes
if scalars is None:
H = compute_blend_weights(verts1, tris1, ij_sel[:,0])
# interpolate colors
lut = quiv.module_manager.scalar_lut_manager.lut.table.to_array()
lut_colors_rgb = lut[(color * (lut.shape[0]-1)).astype(np.int), :3].astype(np.float)
scalars = ((1 - blend_factor) * lut_colors_rgb[H.argmax(axis=1)] + \
blend_factor * (H[:,:,np.newaxis] * lut_colors_rgb[np.newaxis,:,:]).sum(1))
scalars = np.uint8(scalars)
if color_only_correspondences:
scalars_filtered = np.zeros((len(verts1), 3))
scalars_filtered[:] = np.array(color_no_correspondence)[np.newaxis] * 255
scalars_filtered[ij[:,0]] = scalars[ij[:,0]]
scalars = scalars_filtered
scalars2 = np.zeros((len(verts2), 3))
scalars2[:] = np.array(color_no_correspondence)[np.newaxis] * 255
scalars2[ij[:,1]] = scalars[ij[:,0]]
# show meshes
vismesh(verts1, tris1, scalars=scalars)
vismesh(verts2 + offset, tris2, scalars=scalars2)
if block:
mlab.show()