當前位置: 首頁>>代碼示例>>Python>>正文


Python mlab.figure方法代碼示例

本文整理匯總了Python中mayavi.mlab.figure方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.figure方法的具體用法?Python mlab.figure怎麽用?Python mlab.figure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mayavi.mlab的用法示例。


在下文中一共展示了mlab.figure方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_gt_boxes3d

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1, 1, 1)):
    """
    Draw 3D bounding boxes
    Args:
        gt_boxes3d: numpy array (3,8) for XYZs of the box corners
        fig: figure handler
        color: RGB value tuple in range (0,1), box line color
    """
    for k in range(0, 4):
        i, j = k, (k + 1) % 4
        mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
                    [gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)

        i, j = k + 4, (k + 1) % 4 + 4
        mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
                    [gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)

        i, j = k, k + 4
        mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
                    [gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)
    return fig 
開發者ID:darylclimb,項目名稱:cvml_project,代碼行數:23,代碼來源:utils.py

示例2: draw_lidar_simple

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_lidar_simple(pc, color=None):
    ''' Draw lidar points. simplest set up. '''
    fig = mlab.figure(figure=None, bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1600, 1000))
    if color is None: color = pc[:,2]
    #draw points
    mlab.points3d(pc[:,0], pc[:,1], pc[:,2], color, color=None, mode='point', colormap = 'gnuplot', scale_factor=1, figure=fig)
    #draw origin
    mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2)
    #draw axis
    axes=np.array([
        [2.,0.,0.,0.],
        [0.,2.,0.,0.],
        [0.,0.,2.,0.],
    ],dtype=np.float64)
    mlab.plot3d([0, axes[0,0]], [0, axes[0,1]], [0, axes[0,2]], color=(1,0,0), tube_radius=None, figure=fig)
    mlab.plot3d([0, axes[1,0]], [0, axes[1,1]], [0, axes[1,2]], color=(0,1,0), tube_radius=None, figure=fig)
    mlab.plot3d([0, axes[2,0]], [0, axes[2,1]], [0, axes[2,2]], color=(0,0,1), tube_radius=None, figure=fig)
    mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
    return fig 
開發者ID:ghimiredhikura,項目名稱:Complex-YOLOv3,代碼行數:21,代碼來源:mayavi_viewer.py

示例3: display_gripper_on_object

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def display_gripper_on_object(obj_, grasp_):
    """display both object and gripper using mayavi"""
    # transfer wrong was fixed by the previews comment of meshpy modification.
    # gripper_name = 'robotiq_85'
    # home_dir = os.environ['HOME']
    # gripper = RobotGripper.load(gripper_name, home_dir + "/code/grasp-pointnet/dex-net/data/grippers")
    # stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
    # T_obj_world = RigidTransform(from_frame='obj', to_frame='world')
    t_obj_gripper = grasp_.gripper_pose(gripper)

    stable_pose = t_obj_gripper
    grasp_ = grasp_.perpendicular_table(stable_pose)

    Vis.figure(bgcolor=(1, 1, 1), size=(1000, 1000))
    Vis.gripper_on_object(gripper, grasp_, obj_,
                          gripper_color=(0.25, 0.25, 0.25),
                          # stable_pose=stable_pose,  # .T_obj_world,
                          plot_table=False)
    Vis.show() 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:21,代碼來源:read_grasps_from_file.py

示例4: viz

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def viz(pc, centers, corners_3d, pc_origin):
	import mayavi.mlab as mlab
	fig = mlab.figure(figure=None, bgcolor=(0.4, 0.4, 0.4),
	                  fgcolor=None, engine=None, size=(500, 500))
	mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], mode='sphere',
	              colormap='gnuplot', scale_factor=0.1, figure=fig)
	mlab.points3d(centers[:, 0], centers[:, 1], centers[:, 2], mode='sphere',
	              color=(1, 0, 1), scale_factor=0.3, figure=fig)
	mlab.points3d(corners_3d[:, 0], corners_3d[:, 1], corners_3d[:, 2], mode='sphere',
	              color=(1, 1, 0), scale_factor=0.3, figure=fig)
	mlab.points3d(pc_origin[:, 0], pc_origin[:, 1], pc_origin[:, 2], mode='sphere',
	              color=(0, 1, 0), scale_factor=0.05, figure=fig)
	'''
        Green points are original PC from KITTI
        White points are PC feed into the network
        Red point is the predicted center
        Yellow point the post-processed predicted bounding box corners
    '''
	raw_input("Press any key to continue") 
開發者ID:KleinYuan,項目名稱:tf-3d-object-detection,代碼行數:21,代碼來源:utils.py

示例5: render_body

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def render_body(self):
        from mayavi import mlab

        body = self.to_body()
        mask, bounds = body.get_seeded_component(CONFIG.postprocessing.closing_shape)

        fig = mlab.figure(size=(1280, 720))

        if self.target is not None:
            target_grid = mlab.pipeline.scalar_field(self.target)
            target_grid.spacing = CONFIG.volume.resolution

            target_grid = mlab.pipeline.iso_surface(target_grid, contours=[0.5], color=(1, 0, 0), opacity=0.1)

        grid = mlab.pipeline.scalar_field(mask)
        grid.spacing = CONFIG.volume.resolution

        mlab.pipeline.iso_surface(grid, color=(0, 1, 0), contours=[0.5], opacity=0.6)

        mlab.orientation_axes(figure=fig, xlabel='Z', zlabel='X')
        mlab.view(azimuth=45, elevation=30, focalpoint='auto', roll=90, figure=fig)
        mlab.show() 
開發者ID:aschampion,項目名稱:diluvian,代碼行數:24,代碼來源:regions.py

示例6: run_plots

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def run_plots(DataDirectory,Base_file):

    root = DataDirectory+Base_file
    filenames = get_filenames(root)
    counter = 0

    # create the plot for the initial raster
    initial_file = filenames[0]

    # read in the raster
    raster = IO.ReadRasterArrayBlocks(initial_file)

    f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
    s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
    #mlab.outline(color=(0,0,0))

    #mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])

    #@mlab.animate(delay=10)
    #def anim():
    # now loop through each file and update the z values
    for fname in filenames:
        this_rast = IO.ReadRasterArrayBlocks(fname)
        s.mlab_source.scalars = this_rast
        #f.scene.render()
        #
        mlab.savefig(fname[:-4]+'_3d.png')
        #mlab.clf()

    # for (x, y, z) in zip(xs, ys, zs):
    #     print('Updating scene...')
    #     plt.mlab_source.set(x=x, y=y, z=z)
    #     yield 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:35,代碼來源:3d_elev_animations.py

示例7: PlotNewtonRaphsonConvergence

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def PlotNewtonRaphsonConvergence(self, increment=None, figure=None, show_plot=True, save=False, filename=None):
        """Plots convergence of Newton-Raphson for a given increment"""

        if self.fem_solver is None:
            raise ValueError("FEM solver not set for post-processing")

        if increment == None:
            increment = len(self.fem_solver.NRConvergence)-1

        import matplotlib.pyplot as plt
        if figure is None:
            figure = plt.figure()

        plt.plot(np.log10(self.fem_solver.NRConvergence['Increment_'+str(increment)]),'-ko')
        axis_font = {'size':'18'}
        plt.xlabel(r'$No\;\; of\;\; Iterations$', **axis_font)
        plt.ylabel(r'$log_{10}|Residual|$', **axis_font)
        plt.grid('on')

        if save:
            if filename is None:
                warn("No filename provided. I am going to write one in the current directory")
                filename = PWD(__file__) + '/output.eps'
            plt.savefig(filename, format='eps', dpi=500)

        if show_plot:
            plt.show() 
開發者ID:romeric,項目名稱:florence,代碼行數:29,代碼來源:PostProcess.py

示例8: draw_lidar

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_lidar(pc, color=None, fig=None, bgcolor=(0, 0, 0), pts_scale=1, pts_mode='point', pts_color=None):
    """
    Add lidar points
    Args:
        pc: point cloud xyz [npoints, 3]
        color:
        fig: fig handler
    Returns:

    """
    ''' Draw lidar points
    Args:
        pc: numpy array (n,3) of XYZ
        color: numpy array (n) of intensity or whatever
        fig: mayavi figure handler, if None create new one otherwise will use it
    Returns:
        fig: created or used fig
    '''
    if fig is None:
        fig = mlab.figure(figure=None, bgcolor=bgcolor, fgcolor=None, engine=None, size=(1600, 1000))
    if color is None:
        color = pc[:, 2]

    # add points
    mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], color, color=pts_color, mode=pts_mode, colormap='gnuplot',
                  scale_factor=pts_scale, figure=fig)

    # # draw origin
    # mlab.points3d(0, 0, 0, color=(1, 1, 1), mode='sphere', scale_factor=0.2)

    # draw axis
    axes = np.array([
        [2., 0., 0., 0.],
        [0., 2., 0., 0.],
        [0., 0., 2., 0.],
    ], dtype=np.float64)
    mlab.plot3d([0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig)
    mlab.plot3d([0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig)
    mlab.plot3d([0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig)

    return fig 
開發者ID:darylclimb,項目名稱:cvml_project,代碼行數:43,代碼來源:utils.py

示例9: show_pc_segments

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_pc_segments(pc_all, pc_all2, pc_segments):
   """
   3D visualization of segmentation result
   """
   from mayavi import mlab
   mlab.figure(bgcolor=(0.0,0.0,0.0))
   mlab.points3d(pc_all[:,0],pc_all[:,1],pc_all[:,2],scale_factor=0.1,color=(0.3,0.2,0.2),opacity=0.3)
   mlab.points3d(pc_all2[:,0],pc_all2[:,1],pc_all2[:,2],scale_factor=0.1,color=(0.4,0.4,0.4),opacity=1.0)

   for i in range(len(pc_segments)):
       color = (random.random()*0.8 + 0.2  ,random.random()*0.8 + 0.2  ,random.random()*0.8 + 0.2)
       nodes1 = mlab.points3d(pc_segments[i][:,0],pc_segments[i][:,1],pc_segments[i][:,2],scale_factor=0.1,color=color,opacity=0.8)

       nodes1.glyph.scale_mode = 'scale_by_vector'


   length_axis = 2.0
   linewidth_axis = 0.1
   color_axis = (1.0,0.0,0.0)
   pc_axis = np.array([[0,0,0], [length_axis,0,0], [0,length_axis,0],[0,0,length_axis]])
   mlab.plot3d(pc_axis[0:2,0], pc_axis[0:2,1], pc_axis[0:2,2],tube_radius=linewidth_axis, color=(1.0,0.0,0.0))
   mlab.plot3d(pc_axis[[0,2],0], pc_axis[[0,2],1], pc_axis[[0,2],2],tube_radius=linewidth_axis, color=(0.0,1.0,0.0))
   mlab.plot3d(pc_axis[[0,3],0], pc_axis[[0,3],1], pc_axis[[0,3],2],tube_radius=linewidth_axis, color=(0.0,0.0,1.0))


   mlab.show() 
開發者ID:alliecc,項目名稱:argoverse_baselinetracker,代碼行數:28,代碼來源:tracker_tools.py

示例10: draw_coordinate_frame_at_origin

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_coordinate_frame_at_origin(fig: Figure) -> Figure:
    """
    Draw the origin and 3 vectors representing standard basis vectors to express
    a coordinate reference frame.
    Args:
       fig: Mayavi figure
    Returns:
       Updated Mayavi figure
    Based on
    --------
    https://github.com/hengck23/didi-udacity-2017/blob/master/baseline-04/kitti_data/draw.py
    https://github.com/charlesq34/frustum-pointnets/blob/master/mayavi/viz_util.py
    """
    # draw origin
    mlab.points3d(0, 0, 0, color=(1, 1, 1), mode="sphere", scale_factor=0.2)

    # Form standard basis vectors e_1, e_2, e_3
    axes = np.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]], dtype=np.float64)
    # e_1 in red
    mlab.plot3d(
        [0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig
    )
    # e_2 in green
    mlab.plot3d(
        [0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig
    )
    # e_3 in blue
    mlab.plot3d(
        [0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig
    )

    return fig 
開發者ID:hehefan,項目名稱:PointRNN,代碼行數:34,代碼來源:visualization.py

示例11: draw_gt_boxes3d

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1,1,1), line_width=2, draw_text=True, text_scale=(1,1,1), color_list=None):
    ''' Draw 3D bounding boxes
    Args:
        gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners
        fig: mayavi figure handler
        color: RGB value tuple in range (0,1), box line color
        line_width: box line width
        draw_text: boolean, if true, write box indices beside boxes
        text_scale: three number tuple
        color_list: a list of RGB tuple, if not None, overwrite color.
    Returns:
        fig: updated fig
    ''' 
    num = len(gt_boxes3d)
    for n in range(num):
        b = gt_boxes3d[n]
        if color_list is not None:
            color = color_list[n] 
        if draw_text: mlab.text3d(b[4,0], b[4,1], b[4,2], '%d'%n, scale=text_scale, color=color, figure=fig)
        for k in range(0,4):
            #http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
            i,j=k,(k+1)%4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)

            i,j=k+4,(k+1)%4 + 4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)

            i,j=k,k+4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
    #mlab.show(1)
    #mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
    return fig 
開發者ID:ghimiredhikura,項目名稱:Complex-YOLOv3,代碼行數:34,代碼來源:mayavi_viewer.py

示例12: show_lidar_with_boxes

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_lidar_with_boxes(pc_velo, objects, calib,
                          img_fov=False, img_width=None, img_height=None, fig=None): 
    ''' Show all LiDAR points.
        Draw 3d box in LiDAR point cloud (in velo coord system) '''

    if not fig:
        fig = mlab.figure(figure="KITTI_POINT_CLOUD", bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1250, 550))

    if img_fov:
        pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0, img_width, img_height)

    draw_lidar(pc_velo, fig1=fig)

    for obj in objects:

        if obj.type=='DontCare':continue
        # Draw 3d bounding box
        box3d_pts_2d, box3d_pts_3d = kitti_utils.compute_box_3d(obj, calib.P) 
        box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)

        # Draw heading arrow
        ori3d_pts_2d, ori3d_pts_3d = kitti_utils.compute_orientation_3d(obj, calib.P)
        ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
        x1,y1,z1 = ori3d_pts_3d_velo[0,:]
        x2,y2,z2 = ori3d_pts_3d_velo[1,:]

        draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=(0,1,1), line_width=2, draw_text=False)
        
        mlab.plot3d([x1, x2], [y1, y2], [z1,z2], color=(0.5,0.5,0.5), tube_radius=None, line_width=1, figure=fig)

    mlab.view(distance=90) 
開發者ID:ghimiredhikura,項目名稱:Complex-YOLOv3,代碼行數:33,代碼來源:mayavi_viewer.py

示例13: plot_sphere_func

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def plot_sphere_func(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0, normalize=True):

    #TODO: All grids except Clenshaw-Curtis have holes at the poles
    # TODO: update this function now that we changed the order of axes in f

    import matplotlib
    matplotlib.use('WxAgg')
    matplotlib.interactive(True)
    from mayavi import mlab

    if normalize:
        f = (f - np.min(f)) / (np.max(f) - np.min(f))

    if grid == 'Driscoll-Healy':
        b = f.shape[0] / 2
    elif grid == 'Clenshaw-Curtis':
        b = (f.shape[0] - 2) / 2
    elif grid == 'SOFT':
        b = f.shape[0] / 2
    elif grid == 'Gauss-Legendre':
        b = (f.shape[0] - 2) / 2

    if beta is None or alpha is None:
        beta, alpha = meshgrid(b=b, grid_type=grid)

    alpha = np.r_[alpha, alpha[0, :][None, :]]
    beta = np.r_[beta, beta[0, :][None, :]]
    f = np.r_[f, f[0, :][None, :]]

    x = np.sin(beta) * np.cos(alpha)
    y = np.sin(beta) * np.sin(alpha)
    z = np.cos(beta)

    mlab.figure(fignum, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(600, 400))
    mlab.clf()
    mlab.mesh(x, y, z, scalars=f, colormap=colormap)

    #mlab.view(90, 70, 6.2, (-1.3, -2.9, 0.25))
    mlab.show() 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:41,代碼來源:S2.py

示例14: draw_gt_boxes3d

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1,1,1), line_width=1, draw_text=True, text_scale=(1,1,1), color_list=None):
    ''' Draw 3D bounding boxes
    Args:
        gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners
        fig: mayavi figure handler
        color: RGB value tuple in range (0,1), box line color
        line_width: box line width
        draw_text: boolean, if true, write box indices beside boxes
        text_scale: three number tuple
        color_list: a list of RGB tuple, if not None, overwrite color.
    Returns:
        fig: updated fig
    ''' 
    num = len(gt_boxes3d)
    for n in range(num):
        b = gt_boxes3d[n]
        if color_list is not None:
            color = color_list[n] 
        if draw_text: mlab.text3d(b[4,0], b[4,1], b[4,2], '%d'%n, scale=text_scale, color=color, figure=fig)
        for k in range(0,4):
            #http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
            i,j=k,(k+1)%4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)

            i,j=k+4,(k+1)%4 + 4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)

            i,j=k,k+4
            mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
    #mlab.show(1)
    #mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
    return fig 
開發者ID:voidrank,項目名稱:Geo-CNN,代碼行數:34,代碼來源:viz_util.py

示例15: show_lidar_with_boxes

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_lidar_with_boxes(pc_velo, objects, calib,
                          img_fov=False, img_width=None, img_height=None): 
    ''' Show all LiDAR points.
        Draw 3d box in LiDAR point cloud (in velo coord system) '''
    if 'mlab' not in sys.modules: import mayavi.mlab as mlab
    from viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d

    print(('All point num: ', pc_velo.shape[0]))
    fig = mlab.figure(figure=None, bgcolor=(0,0,0),
        fgcolor=None, engine=None, size=(1000, 500))
    if img_fov:
        pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0,
            img_width, img_height)
        print(('FOV point num: ', pc_velo.shape[0]))
    draw_lidar(pc_velo, fig=fig)

    for obj in objects:
        if obj.type=='DontCare':continue
        # Draw 3d bounding box
        box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) 
        box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
        # Draw heading arrow
        ori3d_pts_2d, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
        ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
        x1,y1,z1 = ori3d_pts_3d_velo[0,:]
        x2,y2,z2 = ori3d_pts_3d_velo[1,:]
        draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig)
        mlab.plot3d([x1, x2], [y1, y2], [z1,z2], color=(0.5,0.5,0.5),
            tube_radius=None, line_width=1, figure=fig)
    mlab.show(1) 
開發者ID:voidrank,項目名稱:Geo-CNN,代碼行數:32,代碼來源:kitti_object.py


注:本文中的mayavi.mlab.figure方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。