本文整理匯總了Python中mayavi.mlab.figure方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.figure方法的具體用法?Python mlab.figure怎麽用?Python mlab.figure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mayavi.mlab
的用法示例。
在下文中一共展示了mlab.figure方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_gt_boxes3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1, 1, 1)):
"""
Draw 3D bounding boxes
Args:
gt_boxes3d: numpy array (3,8) for XYZs of the box corners
fig: figure handler
color: RGB value tuple in range (0,1), box line color
"""
for k in range(0, 4):
i, j = k, (k + 1) % 4
mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
[gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)
i, j = k + 4, (k + 1) % 4 + 4
mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
[gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)
i, j = k, k + 4
mlab.plot3d([gt_boxes3d[0, i], gt_boxes3d[0, j]], [gt_boxes3d[1, i], gt_boxes3d[1, j]],
[gt_boxes3d[2, i], gt_boxes3d[2, j]], tube_radius=None, line_width=2, color=color, figure=fig)
return fig
示例2: draw_lidar_simple
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_lidar_simple(pc, color=None):
''' Draw lidar points. simplest set up. '''
fig = mlab.figure(figure=None, bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1600, 1000))
if color is None: color = pc[:,2]
#draw points
mlab.points3d(pc[:,0], pc[:,1], pc[:,2], color, color=None, mode='point', colormap = 'gnuplot', scale_factor=1, figure=fig)
#draw origin
mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2)
#draw axis
axes=np.array([
[2.,0.,0.,0.],
[0.,2.,0.,0.],
[0.,0.,2.,0.],
],dtype=np.float64)
mlab.plot3d([0, axes[0,0]], [0, axes[0,1]], [0, axes[0,2]], color=(1,0,0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[1,0]], [0, axes[1,1]], [0, axes[1,2]], color=(0,1,0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[2,0]], [0, axes[2,1]], [0, axes[2,2]], color=(0,0,1), tube_radius=None, figure=fig)
mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
return fig
示例3: display_gripper_on_object
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def display_gripper_on_object(obj_, grasp_):
"""display both object and gripper using mayavi"""
# transfer wrong was fixed by the previews comment of meshpy modification.
# gripper_name = 'robotiq_85'
# home_dir = os.environ['HOME']
# gripper = RobotGripper.load(gripper_name, home_dir + "/code/grasp-pointnet/dex-net/data/grippers")
# stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
# T_obj_world = RigidTransform(from_frame='obj', to_frame='world')
t_obj_gripper = grasp_.gripper_pose(gripper)
stable_pose = t_obj_gripper
grasp_ = grasp_.perpendicular_table(stable_pose)
Vis.figure(bgcolor=(1, 1, 1), size=(1000, 1000))
Vis.gripper_on_object(gripper, grasp_, obj_,
gripper_color=(0.25, 0.25, 0.25),
# stable_pose=stable_pose, # .T_obj_world,
plot_table=False)
Vis.show()
示例4: viz
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def viz(pc, centers, corners_3d, pc_origin):
import mayavi.mlab as mlab
fig = mlab.figure(figure=None, bgcolor=(0.4, 0.4, 0.4),
fgcolor=None, engine=None, size=(500, 500))
mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], mode='sphere',
colormap='gnuplot', scale_factor=0.1, figure=fig)
mlab.points3d(centers[:, 0], centers[:, 1], centers[:, 2], mode='sphere',
color=(1, 0, 1), scale_factor=0.3, figure=fig)
mlab.points3d(corners_3d[:, 0], corners_3d[:, 1], corners_3d[:, 2], mode='sphere',
color=(1, 1, 0), scale_factor=0.3, figure=fig)
mlab.points3d(pc_origin[:, 0], pc_origin[:, 1], pc_origin[:, 2], mode='sphere',
color=(0, 1, 0), scale_factor=0.05, figure=fig)
'''
Green points are original PC from KITTI
White points are PC feed into the network
Red point is the predicted center
Yellow point the post-processed predicted bounding box corners
'''
raw_input("Press any key to continue")
示例5: render_body
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def render_body(self):
from mayavi import mlab
body = self.to_body()
mask, bounds = body.get_seeded_component(CONFIG.postprocessing.closing_shape)
fig = mlab.figure(size=(1280, 720))
if self.target is not None:
target_grid = mlab.pipeline.scalar_field(self.target)
target_grid.spacing = CONFIG.volume.resolution
target_grid = mlab.pipeline.iso_surface(target_grid, contours=[0.5], color=(1, 0, 0), opacity=0.1)
grid = mlab.pipeline.scalar_field(mask)
grid.spacing = CONFIG.volume.resolution
mlab.pipeline.iso_surface(grid, color=(0, 1, 0), contours=[0.5], opacity=0.6)
mlab.orientation_axes(figure=fig, xlabel='Z', zlabel='X')
mlab.view(azimuth=45, elevation=30, focalpoint='auto', roll=90, figure=fig)
mlab.show()
示例6: run_plots
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def run_plots(DataDirectory,Base_file):
root = DataDirectory+Base_file
filenames = get_filenames(root)
counter = 0
# create the plot for the initial raster
initial_file = filenames[0]
# read in the raster
raster = IO.ReadRasterArrayBlocks(initial_file)
f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
#mlab.outline(color=(0,0,0))
#mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])
#@mlab.animate(delay=10)
#def anim():
# now loop through each file and update the z values
for fname in filenames:
this_rast = IO.ReadRasterArrayBlocks(fname)
s.mlab_source.scalars = this_rast
#f.scene.render()
#
mlab.savefig(fname[:-4]+'_3d.png')
#mlab.clf()
# for (x, y, z) in zip(xs, ys, zs):
# print('Updating scene...')
# plt.mlab_source.set(x=x, y=y, z=z)
# yield
示例7: PlotNewtonRaphsonConvergence
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def PlotNewtonRaphsonConvergence(self, increment=None, figure=None, show_plot=True, save=False, filename=None):
"""Plots convergence of Newton-Raphson for a given increment"""
if self.fem_solver is None:
raise ValueError("FEM solver not set for post-processing")
if increment == None:
increment = len(self.fem_solver.NRConvergence)-1
import matplotlib.pyplot as plt
if figure is None:
figure = plt.figure()
plt.plot(np.log10(self.fem_solver.NRConvergence['Increment_'+str(increment)]),'-ko')
axis_font = {'size':'18'}
plt.xlabel(r'$No\;\; of\;\; Iterations$', **axis_font)
plt.ylabel(r'$log_{10}|Residual|$', **axis_font)
plt.grid('on')
if save:
if filename is None:
warn("No filename provided. I am going to write one in the current directory")
filename = PWD(__file__) + '/output.eps'
plt.savefig(filename, format='eps', dpi=500)
if show_plot:
plt.show()
示例8: draw_lidar
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_lidar(pc, color=None, fig=None, bgcolor=(0, 0, 0), pts_scale=1, pts_mode='point', pts_color=None):
"""
Add lidar points
Args:
pc: point cloud xyz [npoints, 3]
color:
fig: fig handler
Returns:
"""
''' Draw lidar points
Args:
pc: numpy array (n,3) of XYZ
color: numpy array (n) of intensity or whatever
fig: mayavi figure handler, if None create new one otherwise will use it
Returns:
fig: created or used fig
'''
if fig is None:
fig = mlab.figure(figure=None, bgcolor=bgcolor, fgcolor=None, engine=None, size=(1600, 1000))
if color is None:
color = pc[:, 2]
# add points
mlab.points3d(pc[:, 0], pc[:, 1], pc[:, 2], color, color=pts_color, mode=pts_mode, colormap='gnuplot',
scale_factor=pts_scale, figure=fig)
# # draw origin
# mlab.points3d(0, 0, 0, color=(1, 1, 1), mode='sphere', scale_factor=0.2)
# draw axis
axes = np.array([
[2., 0., 0., 0.],
[0., 2., 0., 0.],
[0., 0., 2., 0.],
], dtype=np.float64)
mlab.plot3d([0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig)
mlab.plot3d([0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig)
return fig
示例9: show_pc_segments
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_pc_segments(pc_all, pc_all2, pc_segments):
"""
3D visualization of segmentation result
"""
from mayavi import mlab
mlab.figure(bgcolor=(0.0,0.0,0.0))
mlab.points3d(pc_all[:,0],pc_all[:,1],pc_all[:,2],scale_factor=0.1,color=(0.3,0.2,0.2),opacity=0.3)
mlab.points3d(pc_all2[:,0],pc_all2[:,1],pc_all2[:,2],scale_factor=0.1,color=(0.4,0.4,0.4),opacity=1.0)
for i in range(len(pc_segments)):
color = (random.random()*0.8 + 0.2 ,random.random()*0.8 + 0.2 ,random.random()*0.8 + 0.2)
nodes1 = mlab.points3d(pc_segments[i][:,0],pc_segments[i][:,1],pc_segments[i][:,2],scale_factor=0.1,color=color,opacity=0.8)
nodes1.glyph.scale_mode = 'scale_by_vector'
length_axis = 2.0
linewidth_axis = 0.1
color_axis = (1.0,0.0,0.0)
pc_axis = np.array([[0,0,0], [length_axis,0,0], [0,length_axis,0],[0,0,length_axis]])
mlab.plot3d(pc_axis[0:2,0], pc_axis[0:2,1], pc_axis[0:2,2],tube_radius=linewidth_axis, color=(1.0,0.0,0.0))
mlab.plot3d(pc_axis[[0,2],0], pc_axis[[0,2],1], pc_axis[[0,2],2],tube_radius=linewidth_axis, color=(0.0,1.0,0.0))
mlab.plot3d(pc_axis[[0,3],0], pc_axis[[0,3],1], pc_axis[[0,3],2],tube_radius=linewidth_axis, color=(0.0,0.0,1.0))
mlab.show()
示例10: draw_coordinate_frame_at_origin
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_coordinate_frame_at_origin(fig: Figure) -> Figure:
"""
Draw the origin and 3 vectors representing standard basis vectors to express
a coordinate reference frame.
Args:
fig: Mayavi figure
Returns:
Updated Mayavi figure
Based on
--------
https://github.com/hengck23/didi-udacity-2017/blob/master/baseline-04/kitti_data/draw.py
https://github.com/charlesq34/frustum-pointnets/blob/master/mayavi/viz_util.py
"""
# draw origin
mlab.points3d(0, 0, 0, color=(1, 1, 1), mode="sphere", scale_factor=0.2)
# Form standard basis vectors e_1, e_2, e_3
axes = np.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]], dtype=np.float64)
# e_1 in red
mlab.plot3d(
[0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig
)
# e_2 in green
mlab.plot3d(
[0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig
)
# e_3 in blue
mlab.plot3d(
[0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig
)
return fig
示例11: draw_gt_boxes3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1,1,1), line_width=2, draw_text=True, text_scale=(1,1,1), color_list=None):
''' Draw 3D bounding boxes
Args:
gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners
fig: mayavi figure handler
color: RGB value tuple in range (0,1), box line color
line_width: box line width
draw_text: boolean, if true, write box indices beside boxes
text_scale: three number tuple
color_list: a list of RGB tuple, if not None, overwrite color.
Returns:
fig: updated fig
'''
num = len(gt_boxes3d)
for n in range(num):
b = gt_boxes3d[n]
if color_list is not None:
color = color_list[n]
if draw_text: mlab.text3d(b[4,0], b[4,1], b[4,2], '%d'%n, scale=text_scale, color=color, figure=fig)
for k in range(0,4):
#http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i,j=k,(k+1)%4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i,j=k+4,(k+1)%4 + 4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i,j=k,k+4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
#mlab.show(1)
#mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
return fig
示例12: show_lidar_with_boxes
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_lidar_with_boxes(pc_velo, objects, calib,
img_fov=False, img_width=None, img_height=None, fig=None):
''' Show all LiDAR points.
Draw 3d box in LiDAR point cloud (in velo coord system) '''
if not fig:
fig = mlab.figure(figure="KITTI_POINT_CLOUD", bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1250, 550))
if img_fov:
pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0, img_width, img_height)
draw_lidar(pc_velo, fig1=fig)
for obj in objects:
if obj.type=='DontCare':continue
# Draw 3d bounding box
box3d_pts_2d, box3d_pts_3d = kitti_utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
# Draw heading arrow
ori3d_pts_2d, ori3d_pts_3d = kitti_utils.compute_orientation_3d(obj, calib.P)
ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
x1,y1,z1 = ori3d_pts_3d_velo[0,:]
x2,y2,z2 = ori3d_pts_3d_velo[1,:]
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=(0,1,1), line_width=2, draw_text=False)
mlab.plot3d([x1, x2], [y1, y2], [z1,z2], color=(0.5,0.5,0.5), tube_radius=None, line_width=1, figure=fig)
mlab.view(distance=90)
示例13: plot_sphere_func
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def plot_sphere_func(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0, normalize=True):
#TODO: All grids except Clenshaw-Curtis have holes at the poles
# TODO: update this function now that we changed the order of axes in f
import matplotlib
matplotlib.use('WxAgg')
matplotlib.interactive(True)
from mayavi import mlab
if normalize:
f = (f - np.min(f)) / (np.max(f) - np.min(f))
if grid == 'Driscoll-Healy':
b = f.shape[0] / 2
elif grid == 'Clenshaw-Curtis':
b = (f.shape[0] - 2) / 2
elif grid == 'SOFT':
b = f.shape[0] / 2
elif grid == 'Gauss-Legendre':
b = (f.shape[0] - 2) / 2
if beta is None or alpha is None:
beta, alpha = meshgrid(b=b, grid_type=grid)
alpha = np.r_[alpha, alpha[0, :][None, :]]
beta = np.r_[beta, beta[0, :][None, :]]
f = np.r_[f, f[0, :][None, :]]
x = np.sin(beta) * np.cos(alpha)
y = np.sin(beta) * np.sin(alpha)
z = np.cos(beta)
mlab.figure(fignum, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(600, 400))
mlab.clf()
mlab.mesh(x, y, z, scalars=f, colormap=colormap)
#mlab.view(90, 70, 6.2, (-1.3, -2.9, 0.25))
mlab.show()
示例14: draw_gt_boxes3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def draw_gt_boxes3d(gt_boxes3d, fig, color=(1,1,1), line_width=1, draw_text=True, text_scale=(1,1,1), color_list=None):
''' Draw 3D bounding boxes
Args:
gt_boxes3d: numpy array (n,8,3) for XYZs of the box corners
fig: mayavi figure handler
color: RGB value tuple in range (0,1), box line color
line_width: box line width
draw_text: boolean, if true, write box indices beside boxes
text_scale: three number tuple
color_list: a list of RGB tuple, if not None, overwrite color.
Returns:
fig: updated fig
'''
num = len(gt_boxes3d)
for n in range(num):
b = gt_boxes3d[n]
if color_list is not None:
color = color_list[n]
if draw_text: mlab.text3d(b[4,0], b[4,1], b[4,2], '%d'%n, scale=text_scale, color=color, figure=fig)
for k in range(0,4):
#http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i,j=k,(k+1)%4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i,j=k+4,(k+1)%4 + 4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
i,j=k,k+4
mlab.plot3d([b[i,0], b[j,0]], [b[i,1], b[j,1]], [b[i,2], b[j,2]], color=color, tube_radius=None, line_width=line_width, figure=fig)
#mlab.show(1)
#mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=62.0, figure=fig)
return fig
示例15: show_lidar_with_boxes
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import figure [as 別名]
def show_lidar_with_boxes(pc_velo, objects, calib,
img_fov=False, img_width=None, img_height=None):
''' Show all LiDAR points.
Draw 3d box in LiDAR point cloud (in velo coord system) '''
if 'mlab' not in sys.modules: import mayavi.mlab as mlab
from viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d
print(('All point num: ', pc_velo.shape[0]))
fig = mlab.figure(figure=None, bgcolor=(0,0,0),
fgcolor=None, engine=None, size=(1000, 500))
if img_fov:
pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0,
img_width, img_height)
print(('FOV point num: ', pc_velo.shape[0]))
draw_lidar(pc_velo, fig=fig)
for obj in objects:
if obj.type=='DontCare':continue
# Draw 3d bounding box
box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
# Draw heading arrow
ori3d_pts_2d, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
x1,y1,z1 = ori3d_pts_3d_velo[0,:]
x2,y2,z2 = ori3d_pts_3d_velo[1,:]
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig)
mlab.plot3d([x1, x2], [y1, y2], [z1,z2], color=(0.5,0.5,0.5),
tube_radius=None, line_width=1, figure=fig)
mlab.show(1)