當前位置: 首頁>>代碼示例>>Python>>正文


Python mlab.clf方法代碼示例

本文整理匯總了Python中mayavi.mlab.clf方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.clf方法的具體用法?Python mlab.clf怎麽用?Python mlab.clf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mayavi.mlab的用法示例。


在下文中一共展示了mlab.clf方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_plots

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def run_plots(DataDirectory,Base_file):

    root = DataDirectory+Base_file
    filenames = get_filenames(root)
    counter = 0

    # create the plot for the initial raster
    initial_file = filenames[0]

    # read in the raster
    raster = IO.ReadRasterArrayBlocks(initial_file)

    f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
    s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
    #mlab.outline(color=(0,0,0))

    #mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])

    #@mlab.animate(delay=10)
    #def anim():
    # now loop through each file and update the z values
    for fname in filenames:
        this_rast = IO.ReadRasterArrayBlocks(fname)
        s.mlab_source.scalars = this_rast
        #f.scene.render()
        #
        mlab.savefig(fname[:-4]+'_3d.png')
        #mlab.clf()

    # for (x, y, z) in zip(xs, ys, zs):
    #     print('Updating scene...')
    #     plt.mlab_source.set(x=x, y=y, z=z)
    #     yield 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:35,代碼來源:3d_elev_animations.py

示例2: plot_sphere_func

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def plot_sphere_func(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0, normalize=True):

    #TODO: All grids except Clenshaw-Curtis have holes at the poles
    # TODO: update this function now that we changed the order of axes in f

    import matplotlib
    matplotlib.use('WxAgg')
    matplotlib.interactive(True)
    from mayavi import mlab

    if normalize:
        f = (f - np.min(f)) / (np.max(f) - np.min(f))

    if grid == 'Driscoll-Healy':
        b = f.shape[0] / 2
    elif grid == 'Clenshaw-Curtis':
        b = (f.shape[0] - 2) / 2
    elif grid == 'SOFT':
        b = f.shape[0] / 2
    elif grid == 'Gauss-Legendre':
        b = (f.shape[0] - 2) / 2

    if beta is None or alpha is None:
        beta, alpha = meshgrid(b=b, grid_type=grid)

    alpha = np.r_[alpha, alpha[0, :][None, :]]
    beta = np.r_[beta, beta[0, :][None, :]]
    f = np.r_[f, f[0, :][None, :]]

    x = np.sin(beta) * np.cos(alpha)
    y = np.sin(beta) * np.sin(alpha)
    z = np.cos(beta)

    mlab.figure(fignum, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(600, 400))
    mlab.clf()
    mlab.mesh(x, y, z, scalars=f, colormap=colormap)

    #mlab.view(90, 70, 6.2, (-1.3, -2.9, 0.25))
    mlab.show() 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:41,代碼來源:S2.py

示例3: show_obj

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def show_obj(self, graspable, color='b', clear=False):
        if clear:
            plt.figure()
            plt.clf()
            h = plt.gcf()
            plt.ion()

        # plot the obj
        ax = plt.gca(projection='3d')
        surface = graspable.sdf.surface_points()[0]
        surface = surface[np.random.choice(surface.shape[0], 1000, replace=False)]
        ax.scatter(surface[:, 0], surface[:, 1], surface[:, 2], '.',
                   s=np.ones_like(surface[:, 0]) * 0.3, c=color) 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:15,代碼來源:grasp_sampler.py

示例4: show_grasp_norm

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def show_grasp_norm(self, graspable, grasp_center, grasp_bottom_center,
                        grasp_normal, grasp_axis, minor_pc, color='b', clear=False):
        if clear:
            plt.figure()
            plt.clf()
            h = plt.gcf()
            plt.ion()

        ax = plt.gca(projection='3d')
        grasp_center_grid = graspable.sdf.transform_pt_obj_to_grid(grasp_center)
        ax.scatter(grasp_center_grid[0], grasp_center_grid[1], grasp_center_grid[2], marker='s', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(grasp_bottom_center)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='x', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center + 0.5 * grasp_axis * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='x', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center - 0.5 * grasp_axis * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='x', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center + 0.5 * minor_pc * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='^', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center - 0.5 * minor_pc * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='^', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center + 0.5 * grasp_normal * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='*', c=color)
        grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
            grasp_bottom_center - 0.5 * grasp_normal * self.gripper.max_width)
        ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
                   marker='*', c=color) 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:40,代碼來源:grasp_sampler.py

示例5: _dep_draw_matrix_image

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def _dep_draw_matrix_image( self, outputname="" ):
        '''
        Draws an (adjacency) matrix representing this NoddyTopology object. Depreciated version (just
        loads the .g25 fil that topology opens).
        
        **Arguments**
         - *outputname* = the path of the image to be written. If left as '' the image is written to the same directory as the basename.
        '''
        
        #try importing matplotlib
        try:
            import matplotlib.pyplot as plt
        except ImportError:
            print ("Could not draw image as matplotlib is not installed. Please install matplotlib")
            
        #get output path
        if outputname == "":
            outputname = self.basename + "_matrix.jpg"
            
        #open the matrix file
        f = open(self.basename + '.g25','r')
        lines = f.readlines()
        rows = []
        for l in lines:
            l = l.rstrip()
            row = []
            for e in l.split('\t'):
                row.append(int(e))
            rows.append(row)
    
        #draw & save
        print(("Saving matrix image to... " + outputname))
        cmap=plt.get_cmap('Paired')
        cmap.set_under('white')  # Color for values less than vmin
        plt.imshow(rows, interpolation="nearest", vmin=1, cmap=cmap)
        plt.savefig(outputname)
        plt.clf() 
開發者ID:cgre-aachen,項目名稱:pynoddy,代碼行數:39,代碼來源:output.py

示例6: showmesh

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def showmesh(pts, tris, **kwargs):
    mlab.clf()
    vismesh(pts, tris, **kwargs)
    if 'scalars' in kwargs:
        mlab.colorbar()
    mlab.show() 
開發者ID:tneumann,項目名稱:cmm,代碼行數:8,代碼來源:mesh.py

示例7: evolve_visual3d

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def evolve_visual3d(msnake, levelset=None, num_iters=20):
    """
    Visual evolution of a three-dimensional morphological snake.

    Parameters
    ----------
    msnake : MorphGAC or MorphACWE instance
        The morphological snake solver.
    levelset : array-like, optional
        If given, the levelset of the solver is initialized to this. If not
        given, the evolution will use the levelset already set in msnake.
    num_iters : int, optional
        The number of iterations.
    """
    from mayavi import mlab
    # import matplotlib.pyplot as ppl

    if levelset is not None:
        msnake.levelset = levelset

    fig = mlab.gcf()
    mlab.clf()
    src = mlab.pipeline.scalar_field(msnake.data)
    mlab.pipeline.image_plane_widget(
        src, plane_orientation='x_axes', colormap='gray')
    cnt = mlab.contour3d(msnake.levelset, contours=[0.5])

    @mlab.animate(ui=True)
    def anim():
        for i in range(num_iters):
            msnake.step()
            cnt.mlab_source.scalars = msnake.levelset
            yield

    anim()
    mlab.show()

    # Return the last levelset.
    return msnake.levelset 
開發者ID:RivuletStudio,項目名稱:rivuletpy,代碼行數:41,代碼來源:soma.py

示例8: update_plot

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def update_plot(self, v, f):
    mlab.clf()
    if not isinstance(v, str):
      mlab.triangular_mesh(v[:, 0], v[:, 1], v[:, 2], f)
  # the layout of the dialog screated 
開發者ID:1900zyh,項目名稱:3D-Human-Body-Shape,代碼行數:7,代碼來源:maya_widget.py

示例9: draw_lidar

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def draw_lidar(pc, color=None, fig1=None, bgcolor=(0,0,0), pts_scale=1, pts_mode='point', pts_color=None):
    ''' Draw lidar points
    Args:
        pc: numpy array (n,3) of XYZ
        color: numpy array (n) of intensity or whatever
        fig: mayavi figure handler, if None create new one otherwise will use it
    Returns:
        fig: created or used fig
    '''
    #if fig1 is None: fig1 = mlab.figure(figure="point cloud", bgcolor=bgcolor, fgcolor=None, engine=None, size=(1600, 1000))
    
    mlab.clf(figure=None)
    if color is None: color = pc[:,2]
    mlab.points3d(pc[:,0], pc[:,1], pc[:,2], color, color=pts_color, mode=pts_mode, colormap = 'gnuplot', scale_factor=pts_scale, figure=fig1)
    
    #draw origin
    mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2)
    
    #draw axis
    axes=np.array([
        [2.,0.,0.,0.],
        [0.,2.,0.,0.],
        [0.,0.,2.,0.],
    ],dtype=np.float64)
	
    mlab.plot3d([0, axes[0,0]], [0, axes[0,1]], [0, axes[0,2]], color=(1,0,0), tube_radius=None, figure=fig1)
    mlab.plot3d([0, axes[1,0]], [0, axes[1,1]], [0, axes[1,2]], color=(0,1,0), tube_radius=None, figure=fig1)
    mlab.plot3d([0, axes[2,0]], [0, axes[2,1]], [0, axes[2,2]], color=(0,0,1), tube_radius=None, figure=fig1)

    # draw fov (todo: update to real sensor spec.)
    fov=np.array([  # 45 degree
        [20., 20., 0.,0.],
        [20.,-20., 0.,0.],
    ],dtype=np.float64)
    
    mlab.plot3d([0, fov[0,0]], [0, fov[0,1]], [0, fov[0,2]], color=(1,1,1), tube_radius=None, line_width=1, figure=fig1)
    mlab.plot3d([0, fov[1,0]], [0, fov[1,1]], [0, fov[1,2]], color=(1,1,1), tube_radius=None, line_width=1, figure=fig1)
   
    # draw square region
    TOP_Y_MIN=-20
    TOP_Y_MAX=20
    TOP_X_MIN=0
    TOP_X_MAX=40
    TOP_Z_MIN=-2.0
    TOP_Z_MAX=0.4
    
    x1 = TOP_X_MIN
    x2 = TOP_X_MAX
    y1 = TOP_Y_MIN
    y2 = TOP_Y_MAX
    mlab.plot3d([x1, x1], [y1, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
    mlab.plot3d([x2, x2], [y1, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
    mlab.plot3d([x1, x2], [y1, y1], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
    mlab.plot3d([x1, x2], [y2, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
    
    #mlab.orientation_axes()
    mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=60.0, figure=fig1)
    return fig1 
開發者ID:ghimiredhikura,項目名稱:Complex-YOLOv3,代碼行數:60,代碼來源:mayavi_viewer.py

示例10: check_collision_square

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def check_collision_square(self, grasp_bottom_center, approach_normal, binormal,
                               minor_pc, graspable, p, way, vis=False):
        approach_normal = approach_normal.reshape(1, 3)
        approach_normal = approach_normal / np.linalg.norm(approach_normal)
        binormal = binormal.reshape(1, 3)
        binormal = binormal / np.linalg.norm(binormal)
        minor_pc = minor_pc.reshape(1, 3)
        minor_pc = minor_pc / np.linalg.norm(minor_pc)
        matrix = np.hstack([approach_normal.T, binormal.T, minor_pc.T])
        grasp_matrix = matrix.T  # same as cal the inverse
        if isinstance(graspable, dexnet.grasping.graspable_object.GraspableObject3D):
            points = graspable.sdf.surface_points(grid_basis=False)[0]
        else:
            points = graspable
        points = points - grasp_bottom_center.reshape(1, 3)
        # points_g = points @ grasp_matrix
        tmp = np.dot(grasp_matrix, points.T)
        points_g = tmp.T
        if way == "p_open":
            s1, s2, s4, s8 = p[1], p[2], p[4], p[8]
        elif way == "p_left":
            s1, s2, s4, s8 = p[9], p[1], p[10], p[12]
        elif way == "p_right":
            s1, s2, s4, s8 = p[2], p[13], p[3], p[7]
        elif way == "p_bottom":
            s1, s2, s4, s8 = p[11], p[15], p[12], p[20]
        else:
            raise ValueError('No way!')
        a1 = s1[1] < points_g[:, 1]
        a2 = s2[1] > points_g[:, 1]
        a3 = s1[2] > points_g[:, 2]
        a4 = s4[2] < points_g[:, 2]
        a5 = s4[0] > points_g[:, 0]
        a6 = s8[0] < points_g[:, 0]

        a = np.vstack([a1, a2, a3, a4, a5, a6])
        points_in_area = np.where(np.sum(a, axis=0) == len(a))[0]
        if len(points_in_area) == 0:
            has_p = False
        else:
            has_p = True

        if vis:
            print("points_in_area", way, len(points_in_area))
            mlab.clf()
            # self.show_one_point(np.array([0, 0, 0]))
            self.show_grasp_3d(p)
            self.show_points(points_g)
            if len(points_in_area) != 0:
                self.show_points(points_g[points_in_area], color='r')
            mlab.show()
        # print("points_in_area", way, len(points_in_area))
        return has_p, points_in_area 
開發者ID:lianghongzhuo,項目名稱:PointNetGPD,代碼行數:55,代碼來源:grasp_sampler.py

示例11: evolve_visual

# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def evolve_visual(msnake, levelset=None, num_iters=20, background=None):
    """
    Visual evolution of a morphological snake.

    Parameters
    ----------
    msnake : MorphGAC or MorphACWE instance
        The morphological snake solver.
    levelset : array-like, optional
        If given, the levelset of the solver is initialized to this. If not
        given, the evolution will use the levelset already set in msnake.
    num_iters : int, optional
        The number of iterations.
    background : array-like, optional
        If given, background will be shown behind the contours instead of
        msnake.data.
    """
    from matplotlib import pyplot as ppl

    if levelset is not None:
        msnake.levelset = levelset

    # Prepare the visual environment.
    fig = ppl.gcf()
    fig.clf()
    ax1 = fig.add_subplot(1, 2, 1)
    if background is None:
        ax1.imshow(msnake.data, cmap=ppl.cm.gray)
    else:
        ax1.imshow(background, cmap=ppl.cm.gray)
    ax1.contour(msnake.levelset, [0.5], colors='r')
    ax2 = fig.add_subplot(1, 2, 2)
    ax_u = ax2.imshow(msnake.levelset)
    ppl.pause(0.001)

    # Iterate.
    for i in range(num_iters):

        # Evolve.
        msnake.step()

        # Update figure.
        del ax1.collections[0]
        ax1.contour(msnake.levelset, [0.5], colors='r')
        ax_u.set_data(msnake.levelset)
        fig.canvas.draw()
        # ppl.pause(0.001)

    # Return the last levelset.
    return msnake.levelset 
開發者ID:RivuletStudio,項目名稱:rivuletpy,代碼行數:52,代碼來源:soma.py


注:本文中的mayavi.mlab.clf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。