本文整理匯總了Python中mayavi.mlab.clf方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.clf方法的具體用法?Python mlab.clf怎麽用?Python mlab.clf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mayavi.mlab
的用法示例。
在下文中一共展示了mlab.clf方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_plots
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def run_plots(DataDirectory,Base_file):
root = DataDirectory+Base_file
filenames = get_filenames(root)
counter = 0
# create the plot for the initial raster
initial_file = filenames[0]
# read in the raster
raster = IO.ReadRasterArrayBlocks(initial_file)
f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
#mlab.outline(color=(0,0,0))
#mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])
#@mlab.animate(delay=10)
#def anim():
# now loop through each file and update the z values
for fname in filenames:
this_rast = IO.ReadRasterArrayBlocks(fname)
s.mlab_source.scalars = this_rast
#f.scene.render()
#
mlab.savefig(fname[:-4]+'_3d.png')
#mlab.clf()
# for (x, y, z) in zip(xs, ys, zs):
# print('Updating scene...')
# plt.mlab_source.set(x=x, y=y, z=z)
# yield
示例2: plot_sphere_func
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def plot_sphere_func(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0, normalize=True):
#TODO: All grids except Clenshaw-Curtis have holes at the poles
# TODO: update this function now that we changed the order of axes in f
import matplotlib
matplotlib.use('WxAgg')
matplotlib.interactive(True)
from mayavi import mlab
if normalize:
f = (f - np.min(f)) / (np.max(f) - np.min(f))
if grid == 'Driscoll-Healy':
b = f.shape[0] / 2
elif grid == 'Clenshaw-Curtis':
b = (f.shape[0] - 2) / 2
elif grid == 'SOFT':
b = f.shape[0] / 2
elif grid == 'Gauss-Legendre':
b = (f.shape[0] - 2) / 2
if beta is None or alpha is None:
beta, alpha = meshgrid(b=b, grid_type=grid)
alpha = np.r_[alpha, alpha[0, :][None, :]]
beta = np.r_[beta, beta[0, :][None, :]]
f = np.r_[f, f[0, :][None, :]]
x = np.sin(beta) * np.cos(alpha)
y = np.sin(beta) * np.sin(alpha)
z = np.cos(beta)
mlab.figure(fignum, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(600, 400))
mlab.clf()
mlab.mesh(x, y, z, scalars=f, colormap=colormap)
#mlab.view(90, 70, 6.2, (-1.3, -2.9, 0.25))
mlab.show()
示例3: show_obj
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def show_obj(self, graspable, color='b', clear=False):
if clear:
plt.figure()
plt.clf()
h = plt.gcf()
plt.ion()
# plot the obj
ax = plt.gca(projection='3d')
surface = graspable.sdf.surface_points()[0]
surface = surface[np.random.choice(surface.shape[0], 1000, replace=False)]
ax.scatter(surface[:, 0], surface[:, 1], surface[:, 2], '.',
s=np.ones_like(surface[:, 0]) * 0.3, c=color)
示例4: show_grasp_norm
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def show_grasp_norm(self, graspable, grasp_center, grasp_bottom_center,
grasp_normal, grasp_axis, minor_pc, color='b', clear=False):
if clear:
plt.figure()
plt.clf()
h = plt.gcf()
plt.ion()
ax = plt.gca(projection='3d')
grasp_center_grid = graspable.sdf.transform_pt_obj_to_grid(grasp_center)
ax.scatter(grasp_center_grid[0], grasp_center_grid[1], grasp_center_grid[2], marker='s', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(grasp_bottom_center)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='x', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center + 0.5 * grasp_axis * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='x', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center - 0.5 * grasp_axis * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='x', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center + 0.5 * minor_pc * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='^', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center - 0.5 * minor_pc * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='^', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center + 0.5 * grasp_normal * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='*', c=color)
grasp_center_bottom_grid = graspable.sdf.transform_pt_obj_to_grid(
grasp_bottom_center - 0.5 * grasp_normal * self.gripper.max_width)
ax.scatter(grasp_center_bottom_grid[0], grasp_center_bottom_grid[1], grasp_center_bottom_grid[2],
marker='*', c=color)
示例5: _dep_draw_matrix_image
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def _dep_draw_matrix_image( self, outputname="" ):
'''
Draws an (adjacency) matrix representing this NoddyTopology object. Depreciated version (just
loads the .g25 fil that topology opens).
**Arguments**
- *outputname* = the path of the image to be written. If left as '' the image is written to the same directory as the basename.
'''
#try importing matplotlib
try:
import matplotlib.pyplot as plt
except ImportError:
print ("Could not draw image as matplotlib is not installed. Please install matplotlib")
#get output path
if outputname == "":
outputname = self.basename + "_matrix.jpg"
#open the matrix file
f = open(self.basename + '.g25','r')
lines = f.readlines()
rows = []
for l in lines:
l = l.rstrip()
row = []
for e in l.split('\t'):
row.append(int(e))
rows.append(row)
#draw & save
print(("Saving matrix image to... " + outputname))
cmap=plt.get_cmap('Paired')
cmap.set_under('white') # Color for values less than vmin
plt.imshow(rows, interpolation="nearest", vmin=1, cmap=cmap)
plt.savefig(outputname)
plt.clf()
示例6: showmesh
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def showmesh(pts, tris, **kwargs):
mlab.clf()
vismesh(pts, tris, **kwargs)
if 'scalars' in kwargs:
mlab.colorbar()
mlab.show()
示例7: evolve_visual3d
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def evolve_visual3d(msnake, levelset=None, num_iters=20):
"""
Visual evolution of a three-dimensional morphological snake.
Parameters
----------
msnake : MorphGAC or MorphACWE instance
The morphological snake solver.
levelset : array-like, optional
If given, the levelset of the solver is initialized to this. If not
given, the evolution will use the levelset already set in msnake.
num_iters : int, optional
The number of iterations.
"""
from mayavi import mlab
# import matplotlib.pyplot as ppl
if levelset is not None:
msnake.levelset = levelset
fig = mlab.gcf()
mlab.clf()
src = mlab.pipeline.scalar_field(msnake.data)
mlab.pipeline.image_plane_widget(
src, plane_orientation='x_axes', colormap='gray')
cnt = mlab.contour3d(msnake.levelset, contours=[0.5])
@mlab.animate(ui=True)
def anim():
for i in range(num_iters):
msnake.step()
cnt.mlab_source.scalars = msnake.levelset
yield
anim()
mlab.show()
# Return the last levelset.
return msnake.levelset
示例8: update_plot
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def update_plot(self, v, f):
mlab.clf()
if not isinstance(v, str):
mlab.triangular_mesh(v[:, 0], v[:, 1], v[:, 2], f)
# the layout of the dialog screated
示例9: draw_lidar
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def draw_lidar(pc, color=None, fig1=None, bgcolor=(0,0,0), pts_scale=1, pts_mode='point', pts_color=None):
''' Draw lidar points
Args:
pc: numpy array (n,3) of XYZ
color: numpy array (n) of intensity or whatever
fig: mayavi figure handler, if None create new one otherwise will use it
Returns:
fig: created or used fig
'''
#if fig1 is None: fig1 = mlab.figure(figure="point cloud", bgcolor=bgcolor, fgcolor=None, engine=None, size=(1600, 1000))
mlab.clf(figure=None)
if color is None: color = pc[:,2]
mlab.points3d(pc[:,0], pc[:,1], pc[:,2], color, color=pts_color, mode=pts_mode, colormap = 'gnuplot', scale_factor=pts_scale, figure=fig1)
#draw origin
mlab.points3d(0, 0, 0, color=(1,1,1), mode='sphere', scale_factor=0.2)
#draw axis
axes=np.array([
[2.,0.,0.,0.],
[0.,2.,0.,0.],
[0.,0.,2.,0.],
],dtype=np.float64)
mlab.plot3d([0, axes[0,0]], [0, axes[0,1]], [0, axes[0,2]], color=(1,0,0), tube_radius=None, figure=fig1)
mlab.plot3d([0, axes[1,0]], [0, axes[1,1]], [0, axes[1,2]], color=(0,1,0), tube_radius=None, figure=fig1)
mlab.plot3d([0, axes[2,0]], [0, axes[2,1]], [0, axes[2,2]], color=(0,0,1), tube_radius=None, figure=fig1)
# draw fov (todo: update to real sensor spec.)
fov=np.array([ # 45 degree
[20., 20., 0.,0.],
[20.,-20., 0.,0.],
],dtype=np.float64)
mlab.plot3d([0, fov[0,0]], [0, fov[0,1]], [0, fov[0,2]], color=(1,1,1), tube_radius=None, line_width=1, figure=fig1)
mlab.plot3d([0, fov[1,0]], [0, fov[1,1]], [0, fov[1,2]], color=(1,1,1), tube_radius=None, line_width=1, figure=fig1)
# draw square region
TOP_Y_MIN=-20
TOP_Y_MAX=20
TOP_X_MIN=0
TOP_X_MAX=40
TOP_Z_MIN=-2.0
TOP_Z_MAX=0.4
x1 = TOP_X_MIN
x2 = TOP_X_MAX
y1 = TOP_Y_MIN
y2 = TOP_Y_MAX
mlab.plot3d([x1, x1], [y1, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
mlab.plot3d([x2, x2], [y1, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
mlab.plot3d([x1, x2], [y1, y1], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
mlab.plot3d([x1, x2], [y2, y2], [0,0], color=(0.5,0.5,0.5), tube_radius=0.1, line_width=1, figure=fig1)
#mlab.orientation_axes()
mlab.view(azimuth=180, elevation=70, focalpoint=[ 12.0909996 , -1.04700089, -2.03249991], distance=60.0, figure=fig1)
return fig1
示例10: check_collision_square
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def check_collision_square(self, grasp_bottom_center, approach_normal, binormal,
minor_pc, graspable, p, way, vis=False):
approach_normal = approach_normal.reshape(1, 3)
approach_normal = approach_normal / np.linalg.norm(approach_normal)
binormal = binormal.reshape(1, 3)
binormal = binormal / np.linalg.norm(binormal)
minor_pc = minor_pc.reshape(1, 3)
minor_pc = minor_pc / np.linalg.norm(minor_pc)
matrix = np.hstack([approach_normal.T, binormal.T, minor_pc.T])
grasp_matrix = matrix.T # same as cal the inverse
if isinstance(graspable, dexnet.grasping.graspable_object.GraspableObject3D):
points = graspable.sdf.surface_points(grid_basis=False)[0]
else:
points = graspable
points = points - grasp_bottom_center.reshape(1, 3)
# points_g = points @ grasp_matrix
tmp = np.dot(grasp_matrix, points.T)
points_g = tmp.T
if way == "p_open":
s1, s2, s4, s8 = p[1], p[2], p[4], p[8]
elif way == "p_left":
s1, s2, s4, s8 = p[9], p[1], p[10], p[12]
elif way == "p_right":
s1, s2, s4, s8 = p[2], p[13], p[3], p[7]
elif way == "p_bottom":
s1, s2, s4, s8 = p[11], p[15], p[12], p[20]
else:
raise ValueError('No way!')
a1 = s1[1] < points_g[:, 1]
a2 = s2[1] > points_g[:, 1]
a3 = s1[2] > points_g[:, 2]
a4 = s4[2] < points_g[:, 2]
a5 = s4[0] > points_g[:, 0]
a6 = s8[0] < points_g[:, 0]
a = np.vstack([a1, a2, a3, a4, a5, a6])
points_in_area = np.where(np.sum(a, axis=0) == len(a))[0]
if len(points_in_area) == 0:
has_p = False
else:
has_p = True
if vis:
print("points_in_area", way, len(points_in_area))
mlab.clf()
# self.show_one_point(np.array([0, 0, 0]))
self.show_grasp_3d(p)
self.show_points(points_g)
if len(points_in_area) != 0:
self.show_points(points_g[points_in_area], color='r')
mlab.show()
# print("points_in_area", way, len(points_in_area))
return has_p, points_in_area
示例11: evolve_visual
# 需要導入模塊: from mayavi import mlab [as 別名]
# 或者: from mayavi.mlab import clf [as 別名]
def evolve_visual(msnake, levelset=None, num_iters=20, background=None):
"""
Visual evolution of a morphological snake.
Parameters
----------
msnake : MorphGAC or MorphACWE instance
The morphological snake solver.
levelset : array-like, optional
If given, the levelset of the solver is initialized to this. If not
given, the evolution will use the levelset already set in msnake.
num_iters : int, optional
The number of iterations.
background : array-like, optional
If given, background will be shown behind the contours instead of
msnake.data.
"""
from matplotlib import pyplot as ppl
if levelset is not None:
msnake.levelset = levelset
# Prepare the visual environment.
fig = ppl.gcf()
fig.clf()
ax1 = fig.add_subplot(1, 2, 1)
if background is None:
ax1.imshow(msnake.data, cmap=ppl.cm.gray)
else:
ax1.imshow(background, cmap=ppl.cm.gray)
ax1.contour(msnake.levelset, [0.5], colors='r')
ax2 = fig.add_subplot(1, 2, 2)
ax_u = ax2.imshow(msnake.levelset)
ppl.pause(0.001)
# Iterate.
for i in range(num_iters):
# Evolve.
msnake.step()
# Update figure.
del ax1.collections[0]
ax1.contour(msnake.levelset, [0.5], colors='r')
ax_u.set_data(msnake.levelset)
fig.canvas.draw()
# ppl.pause(0.001)
# Return the last levelset.
return msnake.levelset