本文整理匯總了Python中matplotlib.tri.Triangulation方法的典型用法代碼示例。如果您正苦於以下問題:Python tri.Triangulation方法的具體用法?Python tri.Triangulation怎麽用?Python tri.Triangulation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.tri
的用法示例。
在下文中一共展示了tri.Triangulation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_tripcolor
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_tripcolor():
x = np.asarray([0, 0.5, 1, 0, 0.5, 1, 0, 0.5, 1, 0.75])
y = np.asarray([0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 0.75])
triangles = np.asarray([
[0, 1, 3], [1, 4, 3],
[1, 2, 4], [2, 5, 4],
[3, 4, 6], [4, 7, 6],
[4, 5, 9], [7, 4, 9], [8, 7, 9], [5, 8, 9]])
# Triangulation with same number of points and triangles.
triang = mtri.Triangulation(x, y, triangles)
Cpoints = x + 0.5*y
xmid = x[triang.triangles].mean(axis=1)
ymid = y[triang.triangles].mean(axis=1)
Cfaces = 0.5*xmid + ymid
plt.subplot(121)
plt.tripcolor(triang, Cpoints, edgecolors='k')
plt.title('point colors')
plt.subplot(122)
plt.tripcolor(triang, facecolors=Cfaces, edgecolors='k')
plt.title('facecolors')
示例2: test_triinterpcubic_geom_weights
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_triinterpcubic_geom_weights():
# Tests to check computation of weights for _DOF_estimator_geom:
# The weight sum per triangle can be 1. (in case all angles < 90 degrees)
# or (2*w_i) where w_i = 1-alpha_i/np.pi is the weight of apex i ; alpha_i
# is the apex angle > 90 degrees.
(ax, ay) = (0., 1.687)
x = np.array([ax, 0.5*ax, 0., 1.])
y = np.array([ay, -ay, 0., 0.])
z = np.zeros(4, dtype=np.float64)
triangles = [[0, 2, 3], [1, 3, 2]]
sum_w = np.zeros([4, 2]) # 4 possibilities ; 2 triangles
for theta in np.linspace(0., 2*np.pi, 14): # rotating the figure...
x_rot = np.cos(theta)*x + np.sin(theta)*y
y_rot = -np.sin(theta)*x + np.cos(theta)*y
triang = mtri.Triangulation(x_rot, y_rot, triangles)
cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
dof_estimator = mtri.triinterpolate._DOF_estimator_geom(cubic_geom)
weights = dof_estimator.compute_geom_weights()
# Testing for the 4 possibilities...
sum_w[0, :] = np.sum(weights, 1) - 1
for itri in range(3):
sum_w[itri+1, :] = np.sum(weights, 1) - 2*weights[:, itri]
assert_array_almost_equal(np.min(np.abs(sum_w), axis=0),
np.array([0., 0.], dtype=np.float64))
示例3: test_delaunay_duplicate_points
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_delaunay_duplicate_points():
# x[duplicate] == x[duplicate_of]
# y[duplicate] == y[duplicate_of]
npoints = 10
duplicate = 7
duplicate_of = 3
np.random.seed(23)
x = np.random.random((npoints))
y = np.random.random((npoints))
x[duplicate] = x[duplicate_of]
y[duplicate] = y[duplicate_of]
# Create delaunay triangulation.
triang = mtri.Triangulation(x, y)
# Duplicate points should be ignored, so the index of the duplicate points
# should not appear in any triangle.
assert_array_equal(np.unique(triang.triangles),
np.delete(np.arange(npoints), duplicate))
示例4: _get_tri
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def _get_tri(self):
import matplotlib.tri as tri
_x,_y = [],[]
# ~ df = 1
for n in self.get_nodes():
_x.append(n.x)
# ~ _x.append(n.x + n.ux*df)
_y.append(n.y)
# ~ _y.append(n.y + n.uy*df)
tg = []
for e in self.get_elements():
ni,nj,nm = e.get_nodes()
tg.append([ni.label, nj.label, nm.label])
tr = tri.Triangulation(_x,_y, triangles=tg)
return tr
示例5: test_triinterpcubic_geom_weights
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_triinterpcubic_geom_weights():
# Tests to check computation of weights for _DOF_estimator_geom:
# The weight sum per triangle can be 1. (in case all angles < 90 degrees)
# or (2*w_i) where w_i = 1-alpha_i/np.pi is the weight of apex i; alpha_i
# is the apex angle > 90 degrees.
(ax, ay) = (0., 1.687)
x = np.array([ax, 0.5*ax, 0., 1.])
y = np.array([ay, -ay, 0., 0.])
z = np.zeros(4, dtype=np.float64)
triangles = [[0, 2, 3], [1, 3, 2]]
sum_w = np.zeros([4, 2]) # 4 possibilities; 2 triangles
for theta in np.linspace(0., 2*np.pi, 14): # rotating the figure...
x_rot = np.cos(theta)*x + np.sin(theta)*y
y_rot = -np.sin(theta)*x + np.cos(theta)*y
triang = mtri.Triangulation(x_rot, y_rot, triangles)
cubic_geom = mtri.CubicTriInterpolator(triang, z, kind='geom')
dof_estimator = mtri.triinterpolate._DOF_estimator_geom(cubic_geom)
weights = dof_estimator.compute_geom_weights()
# Testing for the 4 possibilities...
sum_w[0, :] = np.sum(weights, 1) - 1
for itri in range(3):
sum_w[itri+1, :] = np.sum(weights, 1) - 2*weights[:, itri]
assert_array_almost_equal(np.min(np.abs(sum_w), axis=0),
np.array([0., 0.], dtype=np.float64))
示例6: test_trirefiner_fortran_contiguous_triangles
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_trirefiner_fortran_contiguous_triangles():
# github issue 4180. Test requires two arrays of triangles that are
# identical except that one is C-contiguous and one is fortran-contiguous.
triangles1 = np.array([[2, 0, 3], [2, 1, 0]])
assert not np.isfortran(triangles1)
triangles2 = np.array(triangles1, copy=True, order='F')
assert np.isfortran(triangles2)
x = np.array([0.39, 0.59, 0.43, 0.32])
y = np.array([33.99, 34.01, 34.19, 34.18])
triang1 = mtri.Triangulation(x, y, triangles1)
triang2 = mtri.Triangulation(x, y, triangles2)
refiner1 = mtri.UniformTriRefiner(triang1)
refiner2 = mtri.UniformTriRefiner(triang2)
fine_triang1 = refiner1.refine_triangulation(subdiv=1)
fine_triang2 = refiner2.refine_triangulation(subdiv=1)
assert_array_equal(fine_triang1.triangles, fine_triang2.triangles)
示例7: test_qhull_triangle_orientation
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_qhull_triangle_orientation():
# github issue 4437.
xi = np.linspace(-2, 2, 100)
x, y = map(np.ravel, np.meshgrid(xi, xi))
w = np.logical_and(x > y - 1, np.logical_and(x < -1.95, y > -1.2))
x, y = x[w], y[w]
theta = np.radians(25)
x1 = x*np.cos(theta) - y*np.sin(theta)
y1 = x*np.sin(theta) + y*np.cos(theta)
# Calculate Delaunay triangulation using Qhull.
triang = mtri.Triangulation(x1, y1)
# Neighbors returned by Qhull.
qhull_neighbors = triang.neighbors
# Obtain neighbors using own C++ calculation.
triang._neighbors = None
own_neighbors = triang.neighbors
assert_array_equal(qhull_neighbors, own_neighbors)
示例8: triangulate_bary
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def triangulate_bary(bary):
"""
Triangulate a single barycentric triangle using matplotlib.
Argument
--------
bary: barycentric matrix obtained using get_barymat.
Return
------
dely.edges: array (nedges, 2) that contains the indices of the two vertices
that form each edge after the triangulation.
dely.triangles:array (ntriangles, 3) that contains the indices of the three
vertices that form each triangle after the triangulation.
"""
x = numpy.cos(-numpy.pi/4.)*bary[:, 0] + numpy.sin(-numpy.pi/4.)*bary[:, 1]
y = bary[:, 2]
dely = Triang.Triangulation(x, y)
return dely.edges, dely.triangles
示例9: __init__
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def __init__(self, triangulation):
if not isinstance(triangulation, Triangulation):
raise ValueError("Expected a Triangulation object")
self._triangulation = triangulation
示例10: __init__
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def __init__(self, triangulation, z, trifinder=None):
if not isinstance(triangulation, Triangulation):
raise ValueError("Expected a Triangulation object")
self._triangulation = triangulation
self._z = np.asarray(z)
if self._z.shape != self._triangulation.x.shape:
raise ValueError("z array must have same length as triangulation x"
" and y arrays")
if trifinder is not None and not isinstance(trifinder, TriFinder):
raise ValueError("Expected a TriFinder object")
self._trifinder = trifinder or self._triangulation.get_trifinder()
# Default scaling factors : 1.0 (= no scaling)
# Scaling may be used for interpolations for which the order of
# magnitude of x, y has an impact on the interpolant definition.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._unit_x = 1.0
self._unit_y = 1.0
# Default triangle renumbering: None (= no renumbering)
# Renumbering may be used to avoid unecessary computations
# if complex calculations are done inside the Interpolator.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._tri_renum = None
# __call__ and gradient docstrings are shared by all subclasses
# (except, if needed, relevant additions).
# However these methods are only implemented in subclasses to avoid
# confusion in the documentation.
示例11: __init__
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def __init__(self, triangulation):
if not isinstance(triangulation, Triangulation):
raise ValueError('Expected a Triangulation object')
self._triangulation = triangulation
示例12: __init__
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def __init__(self, triangulation, z, trifinder=None):
if not isinstance(triangulation, Triangulation):
raise ValueError("Expected a Triangulation object")
self._triangulation = triangulation
self._z = np.asarray(z)
if self._z.shape != self._triangulation.x.shape:
raise ValueError("z array must have same length as triangulation x"
" and y arrays")
if trifinder is not None and not isinstance(trifinder, TriFinder):
raise ValueError("Expected a TriFinder object")
self._trifinder = trifinder or self._triangulation.get_trifinder()
# Default scaling factors : 1.0 (= no scaling)
# Scaling may be used for interpolations for which the order of
# magnitude of x, y has an impact on the interpolant definition.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._unit_x = 1.0
self._unit_y = 1.0
# Default triangle renumbering: None (= no renumbering)
# Renumbering may be used to avoid unnecessary computations
# if complex calculations are done inside the Interpolator.
# Please refer to :meth:`_interpolate_multikeys` for details.
self._tri_renum = None
# __call__ and gradient docstrings are shared by all subclasses
# (except, if needed, relevant additions).
# However these methods are only implemented in subclasses to avoid
# confusion in the documentation.
示例13: _mesh_plot
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def _mesh_plot(x, y, element_table, kwargs=None):
""" Triplot of the mesh """
if kwargs is None:
kwargs = {}
import matplotlib.pyplot as plt
import matplotlib.tri as tri
# Subtract 1 from element table to align with Python indexing
t = tri.Triangulation(x, y, element_table-1)
fig, ax = plt.subplots()
ax.triplot(t, **kwargs)
return fig, ax
示例14: _filled_mesh_plot
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def _filled_mesh_plot(x, y, z, element_table, kwargs=None):
""" Tricontourf of the mesh and input z"""
if kwargs is None:
kwargs = {}
import matplotlib.pyplot as plt
import matplotlib.tri as tri
# Subtract 1 from element table to align with Python indexing
t = tri.Triangulation(x, y, element_table-1)
fig, ax = plt.subplots()
tf = ax.tricontourf(t, z, **kwargs)
return fig, ax, tf
示例15: test_delaunay
# 需要導入模塊: from matplotlib import tri [as 別名]
# 或者: from matplotlib.tri import Triangulation [as 別名]
def test_delaunay():
# No duplicate points, regular grid.
nx = 5
ny = 4
x, y = np.meshgrid(np.linspace(0.0, 1.0, nx), np.linspace(0.0, 1.0, ny))
x = x.ravel()
y = y.ravel()
npoints = nx*ny
ntriangles = 2 * (nx-1) * (ny-1)
nedges = 3*nx*ny - 2*nx - 2*ny + 1
# Create delaunay triangulation.
triang = mtri.Triangulation(x, y)
# The tests in the remainder of this function should be passed by any
# triangulation that does not contain duplicate points.
# Points - floating point.
assert_array_almost_equal(triang.x, x)
assert_array_almost_equal(triang.y, y)
# Triangles - integers.
assert_equal(len(triang.triangles), ntriangles)
assert_equal(np.min(triang.triangles), 0)
assert_equal(np.max(triang.triangles), npoints-1)
# Edges - integers.
assert_equal(len(triang.edges), nedges)
assert_equal(np.min(triang.edges), 0)
assert_equal(np.max(triang.edges), npoints-1)
# Neighbors - integers.
# Check that neighbors calculated by C++ triangulation class are the same
# as those returned from delaunay routine.
neighbors = triang.neighbors
triang._neighbors = None
assert_array_equal(triang.neighbors, neighbors)
# Is each point used in at least one triangle?
assert_array_equal(np.unique(triang.triangles), np.arange(npoints))