當前位置: 首頁>>代碼示例>>Python>>正文


Python ticker.ScalarFormatter方法代碼示例

本文整理匯總了Python中matplotlib.ticker.ScalarFormatter方法的典型用法代碼示例。如果您正苦於以下問題:Python ticker.ScalarFormatter方法的具體用法?Python ticker.ScalarFormatter怎麽用?Python ticker.ScalarFormatter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.ticker的用法示例。


在下文中一共展示了ticker.ScalarFormatter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __setup_plot

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def __setup_plot(self):
        figure = Figure(facecolor='lightgrey')

        self._axes = figure.add_subplot(111)
        self._axes.set_title('Timeline')
        self._axes.set_xlabel('Time')
        self._axes.set_ylabel('Frequency (MHz)')
        self._axes.grid(True)

        locator = AutoDateLocator()
        formatter = AutoDateFormatter(locator)
        self._axes.xaxis.set_major_formatter(formatter)
        self._axes.xaxis.set_major_locator(locator)
        formatter = ScalarFormatter(useOffset=False)
        self._axes.yaxis.set_major_formatter(formatter)
        self._axes.yaxis.set_minor_locator(AutoMinorLocator(10))

        self._canvas = FigureCanvas(self._panelPlot, -1, figure)
        self._canvas.mpl_connect('motion_notify_event', self.__on_motion)

        Legend.__init__(self, self._axes, self._canvas) 
開發者ID:EarToEarOak,項目名稱:RF-Monitor,代碼行數:23,代碼來源:dialog_timeline.py

示例2: subplots

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def subplots(*args, **kwargs):
    subplot_kw = kwargs.get('subplot_kw', {})
    subplot_kw['adjustable'] = subplot_kw.get('adjustable', 'box')
    kwargs['subplot_kw'] = subplot_kw
    fig, axes = plt.subplots(*args, **kwargs)

    def fmt(ax):
        ax.set_aspect('equal')
        ax.xaxis.set_major_formatter(ScalarFormatter(useOffset=True))
        ax.yaxis.set_major_formatter(ScalarFormatter(useOffset=True))
        ax.xaxis.get_major_formatter().set_powerlimits((0, 0))
        ax.yaxis.get_major_formatter().set_powerlimits((0, 0))

    try:
        for ax in axes:
            fmt(ax)
    except TypeError:
        fmt(axes)

    return fig, axes 
開發者ID:icepack,項目名稱:icepack,代碼行數:22,代碼來源:plot.py

示例3: visualize

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def visualize(file_path):

  entries = []
  with open(file_path) as f:
    entries = [json.loads(line) for line in f.readlines() if line.strip()]

  if not entries:
    print('There is no data in file {}'.format(file_path))
    return

  pdf = backend_pdf.PdfPages("process_info.pdf")
  idx = 0
  names = [name for name in entries[0].keys() if name != 'time']
  times = [entry['time'] for entry in entries]

  for name in names:
    values = [entry[name] for entry in entries]
    fig = plt.figure()
    ax = plt.gca()
    ax.yaxis.set_major_formatter(tick.ScalarFormatter(useMathText=True))
    plt.ticklabel_format(style='sci', axis='y', scilimits=(-2,3))
    plt.plot(times, values, colors[idx % len(colors)], marker='x', label=name)
    plt.xlabel('Time (sec)')
    plt.ylabel(name)
    plt.ylim(ymin=0)
    plt.legend(loc = 'upper left')
    pdf.savefig(fig)
    idx += 1

  plt.show()
  pdf.close()
  print('Generated process_info.pdf from {}'.format(file_path)) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:34,代碼來源:plot_process_info.py

示例4: plot_row

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def plot_row(arrs, save_dir, filename, same_range=False, plot_fn='imshow', 
    cmap='viridis'):
    """
    Args:
        arrs (sequence of 2D Tensor or Numpy): seq of arrs to be plotted
        save_dir (str):
        filename (str):
        same_range (bool): if True, subplots have the same range (colorbar)
        plot_fn (str): choices=['imshow', 'contourf']
    """
    interpolation = None
    arrs = [to_numpy(arr) for arr in arrs]

    if same_range:
        vmax = max([np.amax(arr) for arr in arrs])
        vmin = min([np.amin(arr) for arr in arrs])
    else:
        vmax, vmin = None, None

    fig, _ = plt.subplots(1, len(arrs), figsize=(4.4 * len(arrs), 4))
    for i, ax in enumerate(fig.axes):
        if plot_fn == 'imshow':
            cax = ax.imshow(arrs[i], cmap=cmap, interpolation=interpolation,
                            vmin=vmin, vmax=vmax)
        elif plot_fn == 'contourf':
            cax = ax.contourf(arrs[i], 50, cmap=cmap, vmin=vmin, vmax=vmax)
        if plot_fn == 'contourf':
            for c in cax.collections:
                c.set_edgecolor("face")
                c.set_linewidth(0.000000000001)
        ax.set_axis_off()
        cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04,
                            format=ticker.ScalarFormatter(useMathText=True))
        cbar.formatter.set_powerlimits((-2, 2))
        cbar.ax.yaxis.set_offset_position('left')
        # cbar.ax.tick_params(labelsize=5)
        cbar.update_ticks()
    plt.tight_layout(pad=0.05, w_pad=0.05, h_pad=0.05)
    plt.savefig(save_dir + f'/{filename}.{ext}', dpi=dpi, bbox_inches='tight')
    plt.close(fig) 
開發者ID:cics-nd,項目名稱:pde-surrogate,代碼行數:42,代碼來源:plot.py

示例5: cla

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def cla(self):
        'clear the current axis'
        self.set_major_locator(mticker.AutoLocator())
        self.set_major_formatter(mticker.ScalarFormatter())
        self.set_minor_locator(mticker.NullLocator())
        self.set_minor_formatter(mticker.NullFormatter())

        self.set_label_text('')
        self._set_artist_props(self.label)

        # Keep track of setting to the default value, this allows use to know
        # if any of the following values is explicitly set by the user, so as
        # to not overwrite their settings with any of our 'auto' settings.
        self.isDefault_majloc = True
        self.isDefault_minloc = True
        self.isDefault_majfmt = True
        self.isDefault_minfmt = True
        self.isDefault_label = True

        # Clear the callback registry for this axis, or it may "leak"
        self.callbacks = cbook.CallbackRegistry()

        # whether the grids are on
        self._gridOnMajor = rcParams['axes.grid']
        self._gridOnMinor = False

        self.label.set_text('')
        self._set_artist_props(self.label)

        self.reset_ticks()

        self.converter = None
        self.units = None
        self.set_units(None) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:36,代碼來源:axis.py

示例6: __init__

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def __init__(self, useMathText=True):
        self._fmt = mticker.ScalarFormatter(useMathText=useMathText, useOffset=False)
        self._fmt.create_dummy_axis()
        self._ignore_factor = True 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:6,代碼來源:grid_finder.py

示例7: __init__

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def __init__( self, *args, **kwargs ):
      'The arguments are identical to matplotlib.ticker.ScalarFormatter.'
      ticker.ScalarFormatter.__init__( self, *args, **kwargs ) 
開發者ID:Solid-Mechanics,項目名稱:matplotlib-4-abaqus,代碼行數:5,代碼來源:UnitDblFormatter.py

示例8: cla

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def cla(self):
        'clear the current axis'
        self.set_major_locator(mticker.AutoLocator())
        self.set_major_formatter(mticker.ScalarFormatter())
        self.set_minor_locator(mticker.NullLocator())
        self.set_minor_formatter(mticker.NullFormatter())

        self.set_label_text('')
        self._set_artist_props(self.label)

        # Keep track of setting to the default value, this allows use to know
        # if any of the following values is explicitly set by the user, so as
        # to not overwrite their settings with any of our 'auto' settings.
        self.isDefault_majloc = True
        self.isDefault_minloc = True
        self.isDefault_majfmt = True
        self.isDefault_minfmt = True
        self.isDefault_label = True

        # Clear the callback registry for this axis, or it may "leak"
        self.callbacks = cbook.CallbackRegistry()

        # whether the grids are on
        self._gridOnMajor = rcParams['axes.grid'] and (rcParams['axes.grid.which'] in ('both','major'))
        self._gridOnMinor = rcParams['axes.grid'] and (rcParams['axes.grid.which'] in ('both','minor'))

        self.label.set_text('')
        self._set_artist_props(self.label)

        self.reset_ticks()

        self.converter = None
        self.units = None
        self.set_units(None) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:36,代碼來源:axis.py

示例9: test_use_offset

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def test_use_offset():
    for use_offset in [True, False]:
        with matplotlib.rc_context({'axes.formatter.useoffset': use_offset}):
            tmp_form = mticker.ScalarFormatter()
            nose.tools.assert_equal(use_offset, tmp_form.get_useOffset()) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:7,代碼來源:test_ticker.py

示例10: __init__

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def __init__(self, *args, **kwargs):
        'The arguments are identical to matplotlib.ticker.ScalarFormatter.'
        ticker.ScalarFormatter.__init__(self, *args, **kwargs) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:UnitDblFormatter.py

示例11: __init__

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def __init__(self, useMathText=True):
        self._fmt = mticker.ScalarFormatter(
            useMathText=useMathText, useOffset=False)
        self._fmt.create_dummy_axis()
        self._ignore_factor = True 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:7,代碼來源:grid_finder.py

示例12: test_use_offset

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def test_use_offset(self, use_offset):
        with matplotlib.rc_context({'axes.formatter.useoffset': use_offset}):
            tmp_form = mticker.ScalarFormatter()
            assert use_offset == tmp_form.get_useOffset() 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:6,代碼來源:test_ticker.py

示例13: test_scilimits

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def test_scilimits(self, sci_type, scilimits, lim, orderOfMag):
        tmp_form = mticker.ScalarFormatter()
        tmp_form.set_scientific(sci_type)
        tmp_form.set_powerlimits(scilimits)
        fig, ax = plt.subplots()
        ax.yaxis.set_major_formatter(tmp_form)
        ax.set_ylim(*lim)
        tmp_form.set_locs(ax.yaxis.get_majorticklocs())
        assert orderOfMag == tmp_form.orderOfMagnitude 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:11,代碼來源:test_ticker.py

示例14: scale_axes

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def scale_axes(axis, scale, offset=0.):
    from matplotlib.ticker import ScalarFormatter

    class FormatScaled(ScalarFormatter):

        @staticmethod
        def __call__(value, pos):
            return '{:,.1f}'.format(offset + value * scale).replace(',', ' ')

    axis.set_major_formatter(FormatScaled()) 
開發者ID:hvasbath,項目名稱:beat,代碼行數:12,代碼來源:plotting.py

示例15: plot_stab_vs_k

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import ScalarFormatter [as 別名]
def plot_stab_vs_k(slow_resolved, mvals, kvals, stabval):
    """
    Plotting routine for moduli

    Args:
        slow_resolved (bool): switch for lambda_slow
        mvals (numpy.ndarray): number of nodes
        kvals (numpy.ndarray): number of iterations
        stabval (numpy.ndarray): moduli
    """

    rcParams['figure.figsize'] = 2.5, 2.5
    fig = plt.figure()
    fs = 8
    plt.plot(kvals, stabval[0, :], 'o-', color='b', label=("M=%2i" % mvals[0]), markersize=fs - 2)
    plt.plot(kvals, stabval[1, :], 's-', color='r', label=("M=%2i" % mvals[1]), markersize=fs - 2)
    plt.plot(kvals, stabval[2, :], 'd-', color='g', label=("M=%2i" % mvals[2]), markersize=fs - 2)
    plt.plot(kvals, 1.0 + 0.0 * kvals, '--', color='k')
    plt.xlabel('Number of iterations K', fontsize=fs)
    plt.ylabel(r'Modulus of stability function $\left| R \right|$', fontsize=fs)
    plt.ylim([0.0, 1.2])
    if slow_resolved:
        plt.legend(loc='upper right', fontsize=fs, prop={'size': fs})
    else:
        plt.legend(loc='lower left', fontsize=fs, prop={'size': fs})

    plt.gca().get_xaxis().get_major_formatter().labelOnlyBase = False
    plt.gca().get_xaxis().set_major_formatter(ScalarFormatter())
    # plt.show()
    if slow_resolved:
        filename = 'data/stab_vs_k_resolved.png'
    else:
        filename = 'data/stab_vs_k_unresolved.png'

    fig.savefig(filename, bbox_inches='tight') 
開發者ID:Parallel-in-Time,項目名稱:pySDC,代碼行數:37,代碼來源:plot_stab_vs_k.py


注:本文中的matplotlib.ticker.ScalarFormatter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。