當前位置: 首頁>>代碼示例>>Python>>正文


Python ticker.MultipleLocator方法代碼示例

本文整理匯總了Python中matplotlib.ticker.MultipleLocator方法的典型用法代碼示例。如果您正苦於以下問題:Python ticker.MultipleLocator方法的具體用法?Python ticker.MultipleLocator怎麽用?Python ticker.MultipleLocator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.ticker的用法示例。


在下文中一共展示了ticker.MultipleLocator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plotCM

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plotCM(classes, matrix, savname):
    """classes: a list of class names"""
    # Normalize by row
    matrix = matrix.astype(np.float)
    linesum = matrix.sum(1)
    linesum = np.dot(linesum.reshape(-1, 1), np.ones((1, matrix.shape[1])))
    matrix /= linesum
    # plot
    plt.switch_backend('agg')
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(matrix)
    fig.colorbar(cax)
    ax.xaxis.set_major_locator(MultipleLocator(1))
    ax.yaxis.set_major_locator(MultipleLocator(1))
    for i in range(matrix.shape[0]):
        ax.text(i, i, str('%.2f' % (matrix[i, i] * 100)), va='center', ha='center')
    ax.set_xticklabels([''] + classes, rotation=90)
    ax.set_yticklabels([''] + classes)
    plt.savefig(savname) 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:22,代碼來源:plot_confusion_matrix.py

示例2: _setup_axis

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def _setup_axis(ax, x_range, col_name=None, grid=False, x_spacing=None):
    """ Setup the axis for the joyploy:
        - add the y label if required (as an ytick)
        - add y grid if required
        - make the background transparent
        - set the xlim according to the x_range
        - hide the xaxis and the spines
    """
    if col_name is not None:
        ax.set_yticks([0])
        ax.set_yticklabels([col_name])
        ax.yaxis.grid(grid)
    else:
        ax.yaxis.set_visible(False)
    ax.patch.set_alpha(0)
    ax.set_xlim([min(x_range), max(x_range)])
    ax.tick_params(axis='both', which='both', length=0, pad=10)
    if x_spacing is not None:
        ax.xaxis.set_major_locator(ticker.MultipleLocator(base=x_spacing))
    ax.xaxis.set_visible(_DEBUG)
    ax.set_frame_on(_DEBUG) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:23,代碼來源:joyplot.py

示例3: visualization_init

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def visualization_init(self):
        fig = plt.figure(figsize=(12, 6), frameon=False, tight_layout=True)
        fig.canvas.set_window_title(self.servoing_pol.predictor.name)
        gs = gridspec.GridSpec(1, 2)
        plt.show(block=False)

        return_plotter = LossPlotter(fig, gs[0],
                                     format_dicts=[dict(linewidth=2)] * 2,
                                     labels=['mean returns / 10', 'mean discounted returns'],
                                     ylabel='returns')
        return_major_locator = MultipleLocator(1)
        return_major_formatter = FormatStrFormatter('%d')
        return_minor_locator = MultipleLocator(1)
        return_plotter._ax.xaxis.set_major_locator(return_major_locator)
        return_plotter._ax.xaxis.set_major_formatter(return_major_formatter)
        return_plotter._ax.xaxis.set_minor_locator(return_minor_locator)

        learning_plotter = LossPlotter(fig, gs[1], format_dicts=[dict(linewidth=2)] * 2, ylabel='mean evaluation values')
        return fig, return_plotter, learning_plotter 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:21,代碼來源:cem.py

示例4: show_plot

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def show_plot(loss, step=1, val_loss=None, val_metric=None, val_step=1, file_prefix=None):
  plt.figure()
  fig, ax = plt.subplots(figsize=(12, 8))
  # this locator puts ticks at regular intervals
  loc = ticker.MultipleLocator(base=0.2)
  ax.yaxis.set_major_locator(loc)
  ax.set_ylabel('Loss', color='b')
  ax.set_xlabel('Batch')
  plt.plot(range(step, len(loss) * step + 1, step), loss, 'b')
  if val_loss:
    plt.plot(range(val_step, len(val_loss) * val_step + 1, val_step), val_loss, 'g')
  if val_metric:
    ax2 = ax.twinx()
    ax2.plot(range(val_step, len(val_metric) * val_step + 1, val_step), val_metric, 'r')
    ax2.set_ylabel('ROUGE', color='r')
  if file_prefix:
    plt.savefig(file_prefix + '.png')
    plt.close() 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:20,代碼來源:utils.py

示例5: axisinfo

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def axisinfo(unit, axis):
        'return AxisInfo instance for x and unit'

        if unit == radians:
            return units.AxisInfo(
                majloc=ticker.MultipleLocator(base=np.pi/2),
                majfmt=ticker.FuncFormatter(rad_fn),
                label=unit.fullname,
            )
        elif unit == degrees:
            return units.AxisInfo(
                majloc=ticker.AutoLocator(),
                majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'),
                label=unit.fullname,
            )
        elif unit is not None:
            if hasattr(unit, 'fullname'):
                return units.AxisInfo(label=unit.fullname)
            elif hasattr(unit, 'unit'):
                return units.AxisInfo(label=unit.unit.fullname)
        return None 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:23,代碼來源:basic_units.py

示例6: plot_logs

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plot_logs(logs, score_name="top1", y_max=1, prefix=None, score_type=None):
    """
    Args:
        score_type (str): label for current curve, [valid|train|aggreg]
    """

    # Plot all losses
    scores = logs[score_name]
    if score_type is None:
        label = prefix + ""
    else:
        label = prefix + "_" + score_type.lower()

    plt.plot(scores, label=label)
    plt.title(score_name)
    if score_name == "top1" or score_name == "top1_action":
        # Set maximum for y axis
        plt.minorticks_on()
        x1, x2, _, _ = plt.axis()
        axes = plt.gca()
        axes.yaxis.set_minor_locator(MultipleLocator(0.02))
        plt.axis((x1, x2, 0, y_max))
        plt.grid(b=True, which="minor", color="k", alpha=0.2, linestyle="-")
        plt.grid(b=True, which="major", color="k", linestyle="-") 
開發者ID:hassony2,項目名稱:obman_train,代碼行數:26,代碼來源:logutils.py

示例7: showAttention

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def showAttention(input_sentence, output_words, attentions):
    try:
        # 添加繪圖中的中文顯示
        plt.rcParams['font.sans-serif'] = ['STSong']  # 宋體
        plt.rcParams['axes.unicode_minus'] = False  # 用來正常顯示負號
        # 使用 colorbar 初始化繪圖
        fig = plt.figure()
        ax = fig.add_subplot(111)
        cax = ax.matshow(attentions.numpy(), cmap='bone')
        fig.colorbar(cax)

        # 設置x,y軸信息
        ax.set_xticklabels([''] + input_sentence.split(' ') +
                           ['<EOS>'], rotation=90)
        ax.set_yticklabels([''] + output_words)

        # 顯示標簽
        ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

        plt.show()
    except Exception as err:
        logger.error(err) 
開發者ID:xiaobaoonline,項目名稱:pytorch-in-action,代碼行數:25,代碼來源:train.py

示例8: plot_attention

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plot_attention(in_seq, out_seq, attentions):
    """ From http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html"""

    # Set up figure with colorbar
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions, cmap='bone')
    fig.colorbar(cax)

    # Set up axes
    ax.set_xticklabels([' '] + [str(x) for x in in_seq], rotation=90)
    ax.set_yticklabels([' '] + [str(x) for x in out_seq])

    # Show label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show() 
開發者ID:pemami4911,項目名稱:neural-combinatorial-rl-pytorch,代碼行數:20,代碼來源:plot_attention.py

示例9: mask_ques

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def mask_ques(sen, attn, idx2word):
		"""
		Put attention weights to each word in sentence.
		--------------------
		Arguments:
			sen (LongTensor): encoded sentence.
			attn (FloatTensor): attention weights of each word.
			idx2word (dict): vocabulary.
		"""
		fig, ax = plt.subplots(figsize=(15,15))
		ax.matshow(attn, cmap='bone')
		y = [1]
		x = [1] + [idx2word[i] for i in sen]
		ax.set_yticklabels(y)
		ax.set_xticklabels(x)
		ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
		ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) 
開發者ID:cvlab-tohoku,項目名稱:Dense-CoAttention-Network,代碼行數:19,代碼來源:utils.py

示例10: plot_sharing

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plot_sharing(self):
    if (self.METRICS['Sharing'] is not None and
            np.max(self.METRICS['Sharing'])>1e-4 and
            len(self.METRICS['NumberToWords']) <= 50):
      #Find ordering
      aux = list(enumerate(self.METRICS['NumberToWords']))
      aux.sort(key = lambda x : x[1])
      sorted_order = [_[0] for _ in aux]
      cax = plt.gca().matshow(np.array(
        self.METRICS['Sharing'])[sorted_order,:][:,sorted_order]
        /self.S.usage_normalization)
      plt.gca().set_xticklabels(['']+sorted(self.METRICS['NumberToWords']))
      plt.gca().set_yticklabels(['']+sorted(self.METRICS['NumberToWords']))
      plt.gca().xaxis.set_major_locator(ticker.MultipleLocator(1))
      plt.gca().yaxis.set_major_locator(ticker.MultipleLocator(1))
      if self.store_video:
        plt.savefig(os.path.join(self.plot_name, 'video/sharing-rate_'+
          str(self.step)))
      plt.gcf().colorbar(cax)
      plt.savefig(os.path.join(self.plot_name, 'sharing-rate'))
      plt.clf() 
開發者ID:FerranAlet,項目名稱:modular-metalearning,代碼行數:23,代碼來源:modular_metalearning.py

示例11: plot_energy_stats

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plot_energy_stats(size_stats, basedate, t_edges, outdir):
    t_start, t_end = t_edges[:-1], t_edges[1:]
    starts = np.fromiter( ((s - basedate).total_seconds() for s in t_start), dtype=float )
    ends = np.fromiter( ((e - basedate).total_seconds() for e in t_end), dtype=float )
    t = (starts+ends) / 2.0
    
    specific_energy = size_stats
    
    figure = plt.figure(figsize=(15,10))
    ax     = figure.add_subplot(111)
    ax.plot(t,specific_energy,'k-',label='Specific Energy',alpha=0.6)
    plt.legend()
    # ax.set_xlabel('Time UTC')
    ax.set_ylabel('Specific Energy (J/kg)')
    
    for axs in figure.get_axes():
        axs.xaxis.set_major_formatter(SecDayFormatter(basedate, axs.xaxis))  
        axs.set_xlabel('Time (UTC)')
        axs.xaxis.set_major_locator(MultipleLocator(1800))
        axs.xaxis.set_minor_locator(MultipleLocator(1800/2))
    
    return figure 
開發者ID:deeplycloudy,項目名稱:lmatools,代碼行數:24,代碼來源:energy_stats.py

示例12: plot_tot_energy_stats

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def plot_tot_energy_stats(size_stats, basedate, t_edges, outdir):
    t_start, t_end = t_edges[:-1], t_edges[1:]
    starts = np.fromiter( ((s - basedate).total_seconds() for s in t_start), dtype=float )
    ends = np.fromiter( ((e - basedate).total_seconds() for e in t_end), dtype=float )
    t = (starts+ends) / 2.0
    
    specific_energy = np.abs(size_stats)
    
    figure = plt.figure(figsize=(15,10))
    ax     = figure.add_subplot(111)
    ax.plot(t,specific_energy,'k-',label='Total Energy',alpha=0.6)
    plt.legend()
    # ax.set_xlabel('Time UTC')
    ax.set_ylabel('Total Energy (J)')
    
    for axs in figure.get_axes():
        axs.xaxis.set_major_formatter(SecDayFormatter(basedate, axs.xaxis))  
        axs.set_xlabel('Time (UTC)')
        axs.xaxis.set_major_locator(MultipleLocator(1800))
        axs.xaxis.set_minor_locator(MultipleLocator(1800/2))
    
    return figure
    
# In[6]: 
開發者ID:deeplycloudy,項目名稱:lmatools,代碼行數:26,代碼來源:energy_stats.py

示例13: viz_attn

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def viz_attn(input_sentence, output_words, attentions):
    maxi = max(len(input_sentence.split()),len(output_words))
    attentions = attentions[:maxi,:maxi]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(), cmap=cm.bone)
    fig.colorbar(cax)

    ax.set_xticklabels([''] + input_sentence.split(' ') +
                       ['<EOS>'], rotation=90)
    ax.set_yticklabels([''] + output_words)

    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show() 
開發者ID:GauravBh1010tt,項目名稱:DL-Seq2Seq,代碼行數:18,代碼來源:eval_nmt.py

示例14: showPlot

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def showPlot(points):
    plt.figure()
    fig, ax = plt.subplots()
    # this locator puts ticks at regular intervals
    loc = ticker.MultipleLocator(base=0.2)
    ax.yaxis.set_major_locator(loc)
    plt.plot(points) 
開發者ID:EvilPsyCHo,項目名稱:TaskBot,代碼行數:9,代碼來源:tutorial.py

示例15: reset_axis

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import MultipleLocator [as 別名]
def reset_axis(axes):
    plt.cla()
    axes.set_xlim(0, image_width)
    axes.xaxis.set_major_locator(MultipleLocator(4))
    axes.xaxis.set_minor_locator(MultipleLocator(1))
    axes.xaxis.grid(True, which='minor')

    axes.set_ylim(-image_height, 0)
    axes.yaxis.set_major_locator(MultipleLocator(4))
    axes.yaxis.set_minor_locator(MultipleLocator(1))
    axes.yaxis.grid(True, which='minor') 
開發者ID:idea4good,項目名稱:mnist,代碼行數:13,代碼來源:demo1.py


注:本文中的matplotlib.ticker.MultipleLocator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。