當前位置: 首頁>>代碼示例>>Python>>正文


Python ticker.LinearLocator方法代碼示例

本文整理匯總了Python中matplotlib.ticker.LinearLocator方法的典型用法代碼示例。如果您正苦於以下問題:Python ticker.LinearLocator方法的具體用法?Python ticker.LinearLocator怎麽用?Python ticker.LinearLocator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.ticker的用法示例。


在下文中一共展示了ticker.LinearLocator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_surface

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_surface(x,y,z):
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)

    # Customize the z axis.
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)
    if save_info:
        fig.tight_layout()
        fig.savefig('./gaussian'+ str(idx) + '.png')
    plt.show() 
開發者ID:limingwu8,項目名稱:Image-Restoration,代碼行數:18,代碼來源:deforme.py

示例2: three_d_grid

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def three_d_grid():
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    # Make data.
    X = np.arange(-5, 5, 0.25)
    Y = np.arange(-5, 5, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = (X**3 + Y**3)
    Z = R

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                        linewidth=0, antialiased=False)

    # Customize the z axis.
    #ax.set_zlim(-1.01, 1.01)
    #ax.zaxis.set_major_locator(LinearLocator(10))
    #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)
    plt.show() 
開發者ID:ryu577,項目名稱:pyray,代碼行數:25,代碼來源:lagrange.py

示例3: test_LinearLocator

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_LinearLocator():
    loc = mticker.LinearLocator(numticks=3)
    test_value = np.array([-0.8, -0.3, 0.2])
    assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:6,代碼來源:test_ticker.py

示例4: test_basic

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_basic(self):
        loc = mticker.LinearLocator(numticks=3)
        test_value = np.array([-0.8, -0.3, 0.2])
        assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:6,代碼來源:test_ticker.py

示例5: test_set_params

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_set_params(self):
        """
        Create linear locator with presets={}, numticks=2 and change it to
        something else. See if change was successful. Should not exception.
        """
        loc = mticker.LinearLocator(numticks=2)
        loc.set_params(numticks=8, presets={(0, 1): []})
        assert loc.numticks == 8
        assert loc.presets == {(0, 1): []} 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:11,代碼來源:test_ticker.py

示例6: zernikesurface

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def zernikesurface(self):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		a = self.__a__
		b = __sqrt__(1-a**2)
		x1 = __np__.linspace(-a, a, 50)
		y1 = __np__.linspace(-b, b, 50)
		[X,Y] = __np__.meshgrid(x1,y1)
		Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		ax.auto_scale_xyz([-1, 1], [-1, 1], [Z.max(), Z.min()])
		# ax.set_xlim(-a, a)
		# ax.set_ylim(-b, b)
		# v = max(abs(Z.max()),abs(Z.min()))
		# ax.set_zlim(-v*5, v*5)
		# cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)

		# ax.zaxis.set_major_locator(__LinearLocator__(10))
		# ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)

		# p2v = round(__tools__.peak2valley(Z),5)
		# rms1 = round(__tools__.rms(Z),5)
		__plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:38,代碼來源:zernike_rec.py

示例7: spherical_surf

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def spherical_surf(l1):
	R = 1.02
	l1 = l1  #surface matrix length
	theta = __np__.linspace(0, 2*__np__.pi, l1)
	rho = __np__.linspace(0, 1, l1)
	[u,r] = __np__.meshgrid(theta,rho)
	X = r*__cos__(u)
	Y = r*__sin__(u)
	Z = __sqrt__(R**2-r**2)-__sqrt__(R**2-1)
	v_1 = max(abs(Z.max()),abs(Z.min()))

	noise = (__np__.random.rand(len(Z),len(Z))*2-1)*0.05*v_1
	Z = Z+noise
	fig = __plt__.figure(figsize=(12, 8), dpi=80)
	ax = fig.gca(projection='3d')
	surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,\
								linewidth=0, antialiased=False, alpha = 0.6)
	v = max(abs(Z.max()),abs(Z.min()))
	ax.set_zlim(-1, 2)
	ax.zaxis.set_major_locator(__LinearLocator__(10))
	ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
	cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=__cm__.RdYlGn)
	fig.colorbar(surf, shrink=1, aspect=30)
	__plt__.title('Test Surface: Spherical surface with some noise',fontsize=16)
	__plt__.show()

	#Generate test surface matrix from a detector
	x = __np__.linspace(-1, 1, l1)
	y = __np__.linspace(-1, 1, l1)
	[X,Y] = __np__.meshgrid(x,y)
	Z = __sqrt__(R**2-(X**2+Y**2))-__sqrt__(R**2-1)+noise
	for i in range(len(Z)):
		for j in range(len(Z)):
			if x[i]**2+y[j]**2>1:
				Z[i][j]=0
	return Z 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:38,代碼來源:test_surface.py

示例8: plot_NOM_3D

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_NOM_3D(fname):
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter

    xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
    nX = (yL == yL[0]).sum()
    nY = (xL == xL[0]).sum()
    x = xL.reshape((nY, nX))
    y = yL.reshape((nY, nX))
    z = zL.reshape((nY, nX))
    x1D = xL[:nX]
    y1D = yL[::nX]
#    z += z[::-1, :]
    zmax = abs(z).max()

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False, alpha=0.5)
    ax.set_zlim(-zmax, zmax)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    fig.colorbar(surf, shrink=0.5, aspect=5)

    splineZ = ndimage.spline_filter(z.T)
    nrays = 1e3
    xnew = np.random.uniform(x1D[0], x1D[-1], nrays)
    ynew = np.random.uniform(y1D[0], y1D[-1], nrays)
    coords = np.array([(xnew-x1D[0]) / (x1D[-1]-x1D[0]) * (nX-1),
                       (ynew-y1D[0]) / (y1D[-1]-y1D[0]) * (nY-1)])
    znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
    ax.scatter(xnew, ynew, znew, c=znew, marker='o', color='gray', s=50,
               cmap=cm.coolwarm)

    fig.savefig(fname+'_3d.png')
    plt.show() 
開發者ID:kklmn,項目名稱:xrt,代碼行數:40,代碼來源:read_NOM_maps.py

示例9: plot_window

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_window(xmin, xmax, ymin, ymax, xgrad=0, ygrad=0):
    GuiState.plot_axes.set_xlim(xmin, xmax)
    GuiState.plot_axes.set_ylim(ymin, ymax)

    GuiState.plot_axes.get_xaxis().set_major_locator(
        AutoLocator() if xgrad == 0 else LinearLocator(abs(int((xmax - xmin) / xgrad)) + 1))
    GuiState.plot_axes.get_yaxis().set_major_locator(
        AutoLocator() if ygrad == 0 else LinearLocator(abs(int((ymax - ymin) / ygrad)) + 1)) 
開發者ID:TuringApp,項目名稱:Turing,代碼行數:10,代碼來源:mainwindow.py

示例10: createInteractionChartExample

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createInteractionChartExample():
    algo = AlgorithmSimulation()
    param1 = algo.createHyperParameter()
    param2 = algo.createHyperParameter()
    interaction = algo.createHyperParameterInteraction(param1, param2, type=3)

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import axes3d, Axes3D
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    from matplotlib import cm

    fig = plt.figure()
    ax = fig.gca(projection='3d')

    funcStore = {}
    exec("import math\nimport scipy.interpolate\nfrom scipy.stats import norm\nfunc = " + interaction['func'], funcStore)
    func = funcStore['func']

    xVals = numpy.linspace(0, 1, 25)
    yVals = numpy.linspace(0, 1, 25)

    grid = []
    for x in xVals:
        row = []
        for y in yVals:
            row.append(func(x, y)[0])
        grid.append(row)

    # Plot the surface.
    xVals, yVals = numpy.meshgrid(xVals, yVals)
    surf = ax.plot_surface(xVals, yVals, numpy.array(grid), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)

    # Customize the z axis.
    ax.set_zlim(0, 1.00)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)

    plt.show() 
開發者ID:electricbrainio,項目名稱:hypermax,代碼行數:43,代碼來源:simulation.py

示例11: createContributionChartExample

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createContributionChartExample():
    algo = AlgorithmSimulation()
    param1 = algo.createHyperParameter()
    contribution = algo.createHyperParameterContribution(param1, type=4)

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import axes3d, Axes3D
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    from matplotlib import cm

    fig, ax = plt.subplots()

    print(contribution['func'])
    funcStore = {}
    exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore)
    func = funcStore['func']

    xVals = numpy.linspace(0, 1, 25)

    yVals = []
    for x in xVals:
        yVals.append(func(x))

    # Plot the surface.
    surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)

    plt.show() 
開發者ID:electricbrainio,項目名稱:hypermax,代碼行數:29,代碼來源:simulation.py

示例12: createContributionChartExample

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createContributionChartExample(type=4):
    algo = AlgorithmSimulation()
    param1 = algo.createHyperParameter()
    contribution = algo.createHyperParameterContribution(param1, type=type)

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import axes3d, Axes3D
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    from matplotlib import cm

    fig, ax = plt.subplots()

    print(contribution['func'])
    funcStore = {}
    exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore)
    func = funcStore['func']

    xVals = numpy.linspace(0, 1, 25)

    yVals = []
    for x in xVals:
        yVals.append(func(x))

    # Plot the surface.
    surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)

    plt.show() 
開發者ID:electricbrainio,項目名稱:hypermax,代碼行數:29,代碼來源:simulation.py

示例13: plot_tang

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_tang(X, Y, Z, title, npts=None):

    fig = plt.figure()
    ax = fig.gca(projection='3d')

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap="viridis",
                           linewidth=0, antialiased=False)

    # Customize the z axis.
    ax.set_zlim(-100, 250)
    ax.zaxis.set_tick_params(pad=8)
    ax.zaxis.set_major_locator(LinearLocator(5))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)

    if "teacher" in title:
        plt.suptitle("Teacher model")

    if "student" in title and "sobolev" not in title:
        assert (npts is not None)
        plt.suptitle("Student model %s training pts" % npts)

    if "sobolev" in title:
        assert (npts is not None)
        plt.suptitle("Student model %s training pts + Sobolev" % npts)

    else:
        plt.suptitle("Styblinski Tang function")

    plt.savefig(title) 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:35,代碼來源:plot_results.py

示例14: plot

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot(fn, random_state):
    """
    Implements plotting of 2D functions generated by FunctionGenerator
    :param fn: Instance of FunctionGenerator
    """
    import numpy as np
    from l2l.matplotlib_ import plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter

    fig = plt.figure()
    ax = fig.gca(projection=Axes3D.name)

    # Make data.
    X = np.arange(fn.bound[0], fn.bound[1], 0.05)
    Y = np.arange(fn.bound[0], fn.bound[1], 0.05)
    XX, YY = np.meshgrid(X, Y)
    Z = [fn.cost_function([x, y], random_state=random_state) for x, y in zip(XX.ravel(), YY.ravel())]
    Z = np.array(Z).reshape(XX.shape)

    # Plot the surface.
    surf = ax.plot_surface(XX, YY, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)

    # Customize the z axis.
    # ax.set_zlim(-1.01, 1.01)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    W = np.where(Z == np.min(Z))
    ax.set(title='Min value is %.2f at (%.2f, %.2f)' % (np.min(Z), X[W[0]], Y[W[1]]))

    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5)
    plt.savefig('function.png')
    plt.show() 
開發者ID:IGITUGraz,項目名稱:L2L,代碼行數:37,代碼來源:tools.py

示例15: zernikesurface

# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()

		if matrix == True:
			return Z
		else:
			pass 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:52,代碼來源:zernike.py


注:本文中的matplotlib.ticker.LinearLocator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。