本文整理匯總了Python中matplotlib.ticker.LinearLocator方法的典型用法代碼示例。如果您正苦於以下問題:Python ticker.LinearLocator方法的具體用法?Python ticker.LinearLocator怎麽用?Python ticker.LinearLocator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.ticker
的用法示例。
在下文中一共展示了ticker.LinearLocator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_surface
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_surface(x,y,z):
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
if save_info:
fig.tight_layout()
fig.savefig('./gaussian'+ str(idx) + '.png')
plt.show()
示例2: three_d_grid
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def three_d_grid():
fig = plt.figure()
ax = fig.gca(projection='3d')
# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = (X**3 + Y**3)
Z = R
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
#ax.set_zlim(-1.01, 1.01)
#ax.zaxis.set_major_locator(LinearLocator(10))
#ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
示例3: test_LinearLocator
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_LinearLocator():
loc = mticker.LinearLocator(numticks=3)
test_value = np.array([-0.8, -0.3, 0.2])
assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value)
示例4: test_basic
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_basic(self):
loc = mticker.LinearLocator(numticks=3)
test_value = np.array([-0.8, -0.3, 0.2])
assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value)
示例5: test_set_params
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def test_set_params(self):
"""
Create linear locator with presets={}, numticks=2 and change it to
something else. See if change was successful. Should not exception.
"""
loc = mticker.LinearLocator(numticks=2)
loc.set_params(numticks=8, presets={(0, 1): []})
assert loc.numticks == 8
assert loc.presets == {(0, 1): []}
示例6: zernikesurface
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def zernikesurface(self):
"""
------------------------------------------------
zernikesurface(self, label_1 = True):
Return a 3D Zernike Polynomials surface figure
label_1: default show label
------------------------------------------------
"""
a = self.__a__
b = __sqrt__(1-a**2)
x1 = __np__.linspace(-a, a, 50)
y1 = __np__.linspace(-b, b, 50)
[X,Y] = __np__.meshgrid(x1,y1)
Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
fig = __plt__.figure(figsize=(12, 8), dpi=80)
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
linewidth=0, antialiased=False, alpha = 0.6)
ax.auto_scale_xyz([-1, 1], [-1, 1], [Z.max(), Z.min()])
# ax.set_xlim(-a, a)
# ax.set_ylim(-b, b)
# v = max(abs(Z.max()),abs(Z.min()))
# ax.set_zlim(-v*5, v*5)
# cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
# ax.zaxis.set_major_locator(__LinearLocator__(10))
# ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
fig.colorbar(surf, shrink=1, aspect=30)
# p2v = round(__tools__.peak2valley(Z),5)
# rms1 = round(__tools__.rms(Z),5)
__plt__.show()
示例7: spherical_surf
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def spherical_surf(l1):
R = 1.02
l1 = l1 #surface matrix length
theta = __np__.linspace(0, 2*__np__.pi, l1)
rho = __np__.linspace(0, 1, l1)
[u,r] = __np__.meshgrid(theta,rho)
X = r*__cos__(u)
Y = r*__sin__(u)
Z = __sqrt__(R**2-r**2)-__sqrt__(R**2-1)
v_1 = max(abs(Z.max()),abs(Z.min()))
noise = (__np__.random.rand(len(Z),len(Z))*2-1)*0.05*v_1
Z = Z+noise
fig = __plt__.figure(figsize=(12, 8), dpi=80)
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,\
linewidth=0, antialiased=False, alpha = 0.6)
v = max(abs(Z.max()),abs(Z.min()))
ax.set_zlim(-1, 2)
ax.zaxis.set_major_locator(__LinearLocator__(10))
ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=__cm__.RdYlGn)
fig.colorbar(surf, shrink=1, aspect=30)
__plt__.title('Test Surface: Spherical surface with some noise',fontsize=16)
__plt__.show()
#Generate test surface matrix from a detector
x = __np__.linspace(-1, 1, l1)
y = __np__.linspace(-1, 1, l1)
[X,Y] = __np__.meshgrid(x,y)
Z = __sqrt__(R**2-(X**2+Y**2))-__sqrt__(R**2-1)+noise
for i in range(len(Z)):
for j in range(len(Z)):
if x[i]**2+y[j]**2>1:
Z[i][j]=0
return Z
示例8: plot_NOM_3D
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_NOM_3D(fname):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
nX = (yL == yL[0]).sum()
nY = (xL == xL[0]).sum()
x = xL.reshape((nY, nX))
y = yL.reshape((nY, nX))
z = zL.reshape((nY, nX))
x1D = xL[:nX]
y1D = yL[::nX]
# z += z[::-1, :]
zmax = abs(z).max()
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False, alpha=0.5)
ax.set_zlim(-zmax, zmax)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
splineZ = ndimage.spline_filter(z.T)
nrays = 1e3
xnew = np.random.uniform(x1D[0], x1D[-1], nrays)
ynew = np.random.uniform(y1D[0], y1D[-1], nrays)
coords = np.array([(xnew-x1D[0]) / (x1D[-1]-x1D[0]) * (nX-1),
(ynew-y1D[0]) / (y1D[-1]-y1D[0]) * (nY-1)])
znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
ax.scatter(xnew, ynew, znew, c=znew, marker='o', color='gray', s=50,
cmap=cm.coolwarm)
fig.savefig(fname+'_3d.png')
plt.show()
示例9: plot_window
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_window(xmin, xmax, ymin, ymax, xgrad=0, ygrad=0):
GuiState.plot_axes.set_xlim(xmin, xmax)
GuiState.plot_axes.set_ylim(ymin, ymax)
GuiState.plot_axes.get_xaxis().set_major_locator(
AutoLocator() if xgrad == 0 else LinearLocator(abs(int((xmax - xmin) / xgrad)) + 1))
GuiState.plot_axes.get_yaxis().set_major_locator(
AutoLocator() if ygrad == 0 else LinearLocator(abs(int((ymax - ymin) / ygrad)) + 1))
示例10: createInteractionChartExample
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createInteractionChartExample():
algo = AlgorithmSimulation()
param1 = algo.createHyperParameter()
param2 = algo.createHyperParameter()
interaction = algo.createHyperParameterInteraction(param1, param2, type=3)
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
funcStore = {}
exec("import math\nimport scipy.interpolate\nfrom scipy.stats import norm\nfunc = " + interaction['func'], funcStore)
func = funcStore['func']
xVals = numpy.linspace(0, 1, 25)
yVals = numpy.linspace(0, 1, 25)
grid = []
for x in xVals:
row = []
for y in yVals:
row.append(func(x, y)[0])
grid.append(row)
# Plot the surface.
xVals, yVals = numpy.meshgrid(xVals, yVals)
surf = ax.plot_surface(xVals, yVals, numpy.array(grid), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)
# Customize the z axis.
ax.set_zlim(0, 1.00)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
示例11: createContributionChartExample
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createContributionChartExample():
algo = AlgorithmSimulation()
param1 = algo.createHyperParameter()
contribution = algo.createHyperParameterContribution(param1, type=4)
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib import cm
fig, ax = plt.subplots()
print(contribution['func'])
funcStore = {}
exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore)
func = funcStore['func']
xVals = numpy.linspace(0, 1, 25)
yVals = []
for x in xVals:
yVals.append(func(x))
# Plot the surface.
surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)
plt.show()
示例12: createContributionChartExample
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def createContributionChartExample(type=4):
algo = AlgorithmSimulation()
param1 = algo.createHyperParameter()
contribution = algo.createHyperParameterContribution(param1, type=type)
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib import cm
fig, ax = plt.subplots()
print(contribution['func'])
funcStore = {}
exec("import math\nimport scipy.interpolate\nfunc = " + contribution['func'], funcStore)
func = funcStore['func']
xVals = numpy.linspace(0, 1, 25)
yVals = []
for x in xVals:
yVals.append(func(x))
# Plot the surface.
surf = ax.scatter(numpy.array(xVals), numpy.array(yVals), cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=0, vmax=1)
plt.show()
示例13: plot_tang
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot_tang(X, Y, Z, title, npts=None):
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap="viridis",
linewidth=0, antialiased=False)
# Customize the z axis.
ax.set_zlim(-100, 250)
ax.zaxis.set_tick_params(pad=8)
ax.zaxis.set_major_locator(LinearLocator(5))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
if "teacher" in title:
plt.suptitle("Teacher model")
if "student" in title and "sobolev" not in title:
assert (npts is not None)
plt.suptitle("Student model %s training pts" % npts)
if "sobolev" in title:
assert (npts is not None)
plt.suptitle("Student model %s training pts + Sobolev" % npts)
else:
plt.suptitle("Styblinski Tang function")
plt.savefig(title)
示例14: plot
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def plot(fn, random_state):
"""
Implements plotting of 2D functions generated by FunctionGenerator
:param fn: Instance of FunctionGenerator
"""
import numpy as np
from l2l.matplotlib_ import plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
fig = plt.figure()
ax = fig.gca(projection=Axes3D.name)
# Make data.
X = np.arange(fn.bound[0], fn.bound[1], 0.05)
Y = np.arange(fn.bound[0], fn.bound[1], 0.05)
XX, YY = np.meshgrid(X, Y)
Z = [fn.cost_function([x, y], random_state=random_state) for x, y in zip(XX.ravel(), YY.ravel())]
Z = np.array(Z).reshape(XX.shape)
# Plot the surface.
surf = ax.plot_surface(XX, YY, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)
# Customize the z axis.
# ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
W = np.where(Z == np.min(Z))
ax.set(title='Min value is %.2f at (%.2f, %.2f)' % (np.min(Z), X[W[0]], Y[W[1]]))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.savefig('function.png')
plt.show()
示例15: zernikesurface
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import LinearLocator [as 別名]
def zernikesurface(self, label = True, zlim=[], matrix = False):
"""
------------------------------------------------
zernikesurface(self, label_1 = True):
Return a 3D Zernike Polynomials surface figure
label_1: default show label
------------------------------------------------
"""
theta = __np__.linspace(0, 2*__np__.pi, 100)
rho = __np__.linspace(0, 1, 100)
[u,r] = __np__.meshgrid(theta,rho)
X = r*__cos__(u)
Y = r*__sin__(u)
Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
fig = __plt__.figure(figsize=(12, 8), dpi=80)
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
linewidth=0, antialiased=False, alpha = 0.6)
if zlim == []:
v = max(abs(Z.max()),abs(Z.min()))
ax.set_zlim(-v*5, v*5)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
else:
ax.set_zlim(zlim[0], zlim[1])
cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)
ax.zaxis.set_major_locator(__LinearLocator__(10))
ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
fig.colorbar(surf, shrink=1, aspect=30)
p2v = round(__tools__.peak2valley(Z),5)
rms1 = round(__tools__.rms(Z),5)
label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
if label == True:
__plt__.title('Zernike Polynomials Surface',fontsize=18)
ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
else:
pass
__plt__.show()
if matrix == True:
return Z
else:
pass