本文整理匯總了Python中matplotlib.ticker.FormatStrFormatter方法的典型用法代碼示例。如果您正苦於以下問題:Python ticker.FormatStrFormatter方法的具體用法?Python ticker.FormatStrFormatter怎麽用?Python ticker.FormatStrFormatter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.ticker
的用法示例。
在下文中一共展示了ticker.FormatStrFormatter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: axisinfo
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def axisinfo(unit, axis):
'return AxisInfo instance for x and unit'
if unit == radians:
return units.AxisInfo(
majloc=ticker.MultipleLocator(base=np.pi/2),
majfmt=ticker.FuncFormatter(rad_fn),
label=unit.fullname,
)
elif unit == degrees:
return units.AxisInfo(
majloc=ticker.AutoLocator(),
majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'),
label=unit.fullname,
)
elif unit is not None:
if hasattr(unit, 'fullname'):
return units.AxisInfo(label=unit.fullname)
elif hasattr(unit, 'unit'):
return units.AxisInfo(label=unit.unit.fullname)
return None
示例2: _remove_labels_from_axis
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def _remove_labels_from_axis(axis):
for t in axis.get_majorticklabels():
t.set_visible(False)
try:
# set_visible will not be effective if
# minor axis has NullLocator and NullFormattor (default)
import matplotlib.ticker as ticker
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
axis.set_minor_locator(ticker.AutoLocator())
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
axis.set_minor_formatter(ticker.FormatStrFormatter(''))
for t in axis.get_minorticklabels():
t.set_visible(False)
except Exception: # pragma no cover
raise
axis.get_label().set_visible(False)
示例3: visualization_init
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def visualization_init(self):
fig = plt.figure(figsize=(12, 6), frameon=False, tight_layout=True)
fig.canvas.set_window_title(self.servoing_pol.predictor.name)
gs = gridspec.GridSpec(1, 2)
plt.show(block=False)
return_plotter = LossPlotter(fig, gs[0],
format_dicts=[dict(linewidth=2)] * 2,
labels=['mean returns / 10', 'mean discounted returns'],
ylabel='returns')
return_major_locator = MultipleLocator(1)
return_major_formatter = FormatStrFormatter('%d')
return_minor_locator = MultipleLocator(1)
return_plotter._ax.xaxis.set_major_locator(return_major_locator)
return_plotter._ax.xaxis.set_major_formatter(return_major_formatter)
return_plotter._ax.xaxis.set_minor_locator(return_minor_locator)
learning_plotter = LossPlotter(fig, gs[1], format_dicts=[dict(linewidth=2)] * 2, ylabel='mean evaluation values')
return fig, return_plotter, learning_plotter
示例4: plot_single_cross_section_3d
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def plot_single_cross_section_3d(data, select, subplot):
data = data[:, select]
# subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
# subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)
d = data
# subplot.plot(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=1, alpha=0.8, color='red')
# subplot.scatter(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=10, alpha=0.3, marker=".", color='b')
d = data
subplot.scatter(d[:, 0], d[:, 1], d[:, 2], s=4, alpha=1.0, lw=0.5,
c=vis._build_radial_colors(len(d)),
marker=".",
cmap=plt.cm.hsv)
subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=0.2, alpha=0.9)
subplot.set_xlim([-0.01, 1.01])
subplot.set_ylim([-0.01, 1.01])
subplot.set_zlim([-0.01, 1.01])
ticks = []
subplot.xaxis.set_ticks(ticks)
subplot.yaxis.set_ticks(ticks)
subplot.zaxis.set_ticks(ticks)
subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
示例5: plot_single_cross_section_line
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def plot_single_cross_section_line(data, select, subplot):
data = data[:, select]
# subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
# subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)
d = data
# subplot.plot(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=1, alpha=0.8, color='red')
# subplot.scatter(d[[-1, 0], 0], d[[-1, 0], 1], d[[-1, 0], 2], lw=10, alpha=0.3, marker=".", color='b')
d = data
subplot.plot(data[:, 0], data[:, 1], data[:, 2], color='black', lw=1, alpha=0.4)
subplot.set_xlim([-0.01, 1.01])
subplot.set_ylim([-0.01, 1.01])
subplot.set_zlim([-0.01, 1.01])
ticks = []
subplot.xaxis.set_ticks(ticks)
subplot.yaxis.set_ticks(ticks)
subplot.zaxis.set_ticks(ticks)
subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
示例6: _plot_single_cross_section
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def _plot_single_cross_section(data, select, subplot):
data = data[:, select]
# subplot.scatter(data[:, 0], data[:, 1], s=20, lw=0, edgecolors='none', alpha=1.0,
subplot.plot(data[:, 0], data[:, 1], color='black', lw=1, alpha=0.4)
subplot.plot(data[[-1, 0], 0], data[[-1, 0], 1], lw=1, alpha=0.8, color='red')
subplot.scatter(data[:, 0], data[:, 1], s=4, alpha=1.0, lw=0.5,
c=_build_radial_colors(len(data)),
marker=".",
cmap=plt.cm.Spectral)
# data = np.vstack((data, np.asarray([data[0, :]])))
# subplot.plot(data[:, 0], data[:, 1], alpha=0.4)
subplot.set_xlabel('feature %d' % select[0], labelpad=-12)
subplot.set_ylabel('feature %d' % select[1], labelpad=-12)
subplot.set_xlim([-0.05, 1.05])
subplot.set_ylim([-0.05, 1.05])
subplot.xaxis.set_ticks([0, 1])
subplot.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
subplot.yaxis.set_ticks([0, 1])
subplot.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.0f'))
示例7: plot_model
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def plot_model(model, ax, cur_x, cur_y, pred_x, seen_x=None, seen_y=None):
mx, vx = model.predict_f(pred_x)
Zopt = model.Z.value
mu, Su = model.predict_f_full_cov(Zopt)
if len(Su.shape) == 3:
Su = Su[:, :, 0]
vx = vx[:, 0]
ax.plot(cur_x, cur_y, 'kx', mew=1, alpha=0.8)
if seen_x is not None:
ax.plot(seen_x, seen_y, 'kx', mew=1, alpha=0.2)
ax.plot(pred_x, mx, 'b', lw=2)
ax.fill_between(
pred_x[:, 0], mx[:, 0] - 2*np.sqrt(vx),
mx[:, 0] + 2*np.sqrt(vx),
color='b', alpha=0.3)
ax.plot(Zopt, mu, 'ro', mew=1)
ax.set_ylim([-2.4, 2])
ax.set_xlim([np.min(pred_x), np.max(pred_x)])
plt.subplots_adjust(hspace = .08)
ax.set_ylabel('y')
ax.yaxis.set_ticks(np.arange(-2, 3, 1))
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
return mu, Su, Zopt
示例8: plot_radius
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def plot_radius(xcoords, exact_radius, radii):
fig, ax = plt.subplots()
plt.plot(xcoords, exact_radius, color='k', linestyle='--', linewidth=1, label='exact')
for type, radius in radii.items():
plt.plot(xcoords, radius, linestyle='-', linewidth=2, label=type)
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.2f'))
ax.set_ylabel('radius')
ax.set_xlabel('time')
ax.grid()
ax.legend(loc=3)
fname = 'data/AC_contracting_circle_standard_integrators'
plt.savefig('{}.pdf'.format(fname), rasterized=True, bbox_inches='tight')
# plt.show()
示例9: plot_surface
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def plot_surface(x,y,z):
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
if save_info:
fig.tight_layout()
fig.savefig('./gaussian'+ str(idx) + '.png')
plt.show()
示例10: three_d_grid
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def three_d_grid():
fig = plt.figure()
ax = fig.gca(projection='3d')
# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = (X**3 + Y**3)
Z = R
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
#ax.set_zlim(-1.01, 1.01)
#ax.zaxis.set_major_locator(LinearLocator(10))
#ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
示例11: wrap_formatter
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def wrap_formatter(formatter):
"""
Wraps formatting function or string in
appropriate matplotlib formatter type.
"""
if isinstance(formatter, ticker.Formatter):
return formatter
elif callable(formatter):
args = [arg for arg in _getargspec(formatter).args
if arg != 'self']
wrapped = formatter
if len(args) == 1:
def wrapped(val, pos=None):
return formatter(val)
return ticker.FuncFormatter(wrapped)
elif isinstance(formatter, basestring):
if re.findall(r"\{(\w+)\}", formatter):
return ticker.StrMethodFormatter(formatter)
else:
return ticker.FormatStrFormatter(formatter)
示例12: set_plot
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def set_plot(amp, function):
global figure_w, figure_h, fig
fig=plt.figure()
ax = fig.add_subplot(111)
x = np.linspace(-np.pi*2, np.pi*2, 100)
if function == 'sine':
y= amp*np.sin(x)
ax.set_title('sin(x)')
else:
y=amp*np.cos(x)
ax.set_title('cos(x)')
plt.plot(x/np.pi,y)
#centre bottom and left axes to zero
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
#Format axes - nicer eh!
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
figure_x, figure_y, figure_w, figure_h = fig.bbox.bounds
示例13: LDR
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def LDR(Time_Series):
columns=['Consume diesel', 'Lost Load', 'Energy PV','Curtailment','Energy Diesel',
'Discharge energy from the Battery', 'Charge energy to the Battery',
'Energy_Demand', 'State_Of_Charge_Battery' ]
Sort_Values = Time_Series.sort('Energy_Demand', ascending=False)
index_values = []
for i in range(len(Time_Series)):
index_values.append((i+1)/float(len(Time_Series))*100)
Sort_Values = pd.DataFrame(Sort_Values.values/1000, columns=columns, index=index_values)
plt.figure()
ax = Sort_Values['Energy_Demand'].plot(style='k-',linewidth=1)
fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)
ax.xaxis.set_major_formatter(xticks)
ax.set_ylabel('Load (kWh)')
ax.set_xlabel('Percentage (%)')
plt.savefig('Results/LDR.png', bbox_inches='tight')
plt.show()
示例14: init_graph
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def init_graph(self):
plt.title("Franchise Earnings Comparison Over 20 Years", transform=None, x=self.width*0.10, y=self.height*0.90, ha='left')
if TRACK_FRANCHISES:
plt.subplots_adjust(left=0.1, right=0.75, top=0.8, bottom=0.1)
else:
plt.subplots_adjust(left=0.1, right=0.9, top=0.8, bottom=0.1)
yformat = ticker.FormatStrFormatter("$%2.1fB")
self.ax = plt.gca()
self.ax.yaxis.set_major_formatter(yformat)
self.ax.spines['top'].set_visible(False)
self.ax.spines['bottom'].set_visible(False)
self.ax.spines['left'].set_visible(False)
self.ax.spines['right'].set_visible(False)
for _ in self.franchise_data_array:
line, = self.ax.step([], [], lw=1, where='post')
self.lines.append(line)
x_indent_2 = self.width*0.75
y_indent_1 = self.height*0.88
self.leaderboard['cur_date'] = self.ax.text(x_indent_2, y_indent_1, "", transform=None, fontsize=16, fontname='Monospace')
self.ax.text(self.width*0.30, self.height*0.85, "(Adjusted for inflation)", transform=None, ha='left')
示例15: DrawGridLine
# 需要導入模塊: from matplotlib import ticker [as 別名]
# 或者: from matplotlib.ticker import FormatStrFormatter [as 別名]
def DrawGridLine(products, m):
pj = products.map.projection
if m is plt:
# 坐標軸
plt.axis(pj.axis)
# 設置坐標軸刻度值顯示格式
if pj.axis == 'on':
x_majorFormatter = FormatStrFormatter(pj.axisfmt[0])
y_majorFormatter = FormatStrFormatter(pj.axisfmt[1])
plt.gca().xaxis.set_major_formatter(x_majorFormatter)
plt.gca().yaxis.set_major_formatter(y_majorFormatter)
xaxis = plt.gca().xaxis
for label in xaxis.get_ticklabels():
label.set_fontproperties('DejaVu Sans')
label.set_fontsize(10)
yaxis = plt.gca().yaxis
for label in yaxis.get_ticklabels():
label.set_fontproperties('DejaVu Sans')
label.set_fontsize(10)
xaxis.set_visible(pj.lonlabels[3] == 1)
yaxis.set_visible(pj.latlabels[0] == 1)
return
else:
# draw parallels and meridians.
if pj.axis == 'on':
m.drawparallels(np.arange(-80., 81., 10.), labels=pj.latlabels, family='DejaVu Sans', fontsize=10)
m.drawmeridians(np.arange(-180., 181., 10.), labels=pj.lonlabels, family='DejaVu Sans', fontsize=10)