當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.ylim方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.ylim方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.ylim方法的具體用法?Python pyplot.ylim怎麽用?Python pyplot.ylim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.ylim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_roc_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:18,代碼來源:__init__.py

示例2: data_stat

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def data_stat():
    """data statistic"""
    audio_path = './data/esc10/audio/'
    class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
    nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
    rects = plt.bar(range(len(nums_each_class)), nums_each_class)

    index = list(range(len(nums_each_class)))
    plt.title('Numbers of each class for ESC-10 dataset')
    plt.ylim(ymax=60, ymin=0)
    plt.xticks(index, class_list, rotation=45)
    plt.ylabel("numbers")

    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')

    plt.tight_layout()
    plt.show() 
開發者ID:JasonZhang156,項目名稱:Sound-Recognition-Tutorial,代碼行數:21,代碼來源:data_analysis.py

示例3: visualize_2D_trip

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})
        # Plot cities
        colors = ['red'] # Depot is first city
        for i in range(len(tw_open)-1):
            colors.append('blue')
        plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)
        # Annotate cities with TW
        tw_open = np.rint(tw_open)
        tw_close = np.rint(tw_close)
        time_window = np.concatenate((tw_open,tw_close),axis=1)
        for tw, (x, y) in zip(time_window,(zip(X,Y))):
            plt.annotate(tw,xy=(x, y))  
        plt.xlim(0,60)
        plt.ylim(0,60)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:27,代碼來源:dataset.py

示例4: visualize_2D_trip

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def visualize_2D_trip(self, trip):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})

        # Plot cities
        plt.scatter(trip[:,0], trip[:,1], s=200)

        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)

        # Annotate cities with order
        labels = range(len(trip))
        for i, (x, y) in zip(labels,(zip(X,Y))):
            plt.annotate(i,xy=(x, y))  

        plt.xlim(0,100)
        plt.ylim(0,100)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:26,代碼來源:dataset.py

示例5: plot_wh_methods

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_wh_methods():  # from utils.utils import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), dpi=150)
    plt.plot(x, ya, '.-', label='yolo method')
    plt.plot(x, yb ** 2, '.-', label='^2 power method')
    plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.legend()
    fig.tight_layout()
    fig.savefig('comparison.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:20,代碼來源:utils.py

示例6: make_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def make_plot(files, labels):
	plt.figure()
	for file_idx in range(len(files)):
		rot_err, trans_err = read_csv(files[file_idx])
		success_dict = count_success(trans_err)

		x_range = success_dict.keys()
		x_range.sort()
		success = []
		for i in x_range:
			success.append(success_dict[i])
		success = np.array(success)/total_cases

		plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
		# plt.scatter(x_range, success, s=50)
	plt.ylabel('Success Ratio', fontsize=40)
	plt.xlabel('Threshold for Translation Error', fontsize=40)
	plt.tick_params(labelsize=40, width=3, length=10)
	plt.grid(True)
	plt.ylim(0,1.005)
	plt.yticks(np.arange(0,1.2,0.2))
	plt.xticks(np.arange(0,2.1,0.2))
	plt.xlim(0,2)
	plt.legend(fontsize=30, loc=4) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:26,代碼來源:plot_threshold_vs_success_trans.py

示例7: plot_contour

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_contour(self, w=0.0):
    """
      Plot contour with poles of Green's function in the self-energy 
      SelfEnergy(w) = G(w+w')W(w')
      with respect to w' = Re(w')+Im(w')
      Poles of G(w+w') are located: w+w'-(E_n-Fermi)+i*eps sign(E_n-Fermi)==0 ==> 
      w'= (E_n-Fermi) - w -i eps sign(E_n-Fermi)
    """
    try :
      import matplotlib.pyplot as plt
      from matplotlib.patches import Arc, Arrow 
    except:
      print('no matplotlib?')
      return

    fig,ax = plt.subplots()
    fe = self.fermi_energy
    ee = self.mo_energy
    iee = 0.5-np.array(ee>fe)
    eew = ee-fe-w
    ax.plot(eew, iee, 'r.', ms=10.0)
    pp = list()
    pp.append(Arc((0,0),4,4,angle=0, linewidth=2, theta1=0, theta2=90, zorder=2, color='b'))
    pp.append(Arc((0,0),4,4,angle=0, linewidth=2, theta1=180, theta2=270, zorder=2, color='b'))
    pp.append(Arrow(0,2,0,-4,width=0.2, color='b', hatch='o'))
    pp.append(Arrow(-2,0,4,0,width=0.2, color='b', hatch='o'))
    for p in pp: ax.add_patch(p)
    ax.set_aspect('equal')
    ax.grid(True, which='both')
    ax.axhline(y=0, color='k')
    ax.axvline(x=0, color='k')
    plt.ylim(-3.0,3.0)
    plt.show() 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:35,代碼來源:mf.py

示例8: _show_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()

#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#//////////////////////////////////////////////////////////// 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:26,代碼來源:util.py

示例9: plot_pixels

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_pixels(file_name, candidate_data_single_band,
                reference_data_single_band, limits=None, fit_line=None):

    logging.info('Display: Creating pixel plot - {}'.format(file_name))
    fig = plt.figure()
    plt.hexbin(
        candidate_data_single_band, reference_data_single_band, mincnt=1)
    if not limits:
        min_value = 0
        _, ymax = plt.gca().get_ylim()
        _, xmax = plt.gca().get_xlim()
        max_value = max([ymax, xmax])
        limits = [min_value, max_value]
    plt.plot(limits, limits, 'k-')
    if fit_line:
        start = limits[0] * fit_line.gain + fit_line.offset
        end = limits[1] * fit_line.gain + fit_line.offset
        plt.plot(limits, [start, end], 'g-')
    plt.xlim(limits)
    plt.ylim(limits)
    plt.xlabel('Candidate DNs')
    plt.ylabel('Reference DNs')
    fig.savefig(file_name, bbox_inches='tight')
    plt.close(fig) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:26,代碼來源:display.py

示例10: plot_histograms

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_histograms(file_name, candidate_data_multiple_bands,
                    reference_data_multiple_bands=None,
                    # Default is for Blue-Green-Red-NIR:
                    colour_order=['b', 'g', 'r', 'y'],
                    x_limits=None, y_limits=None):
    logging.info('Display: Creating histogram plot - {}'.format(file_name))
    fig = plt.figure()
    plt.hold(True)
    for colour, c_band in zip(colour_order, candidate_data_multiple_bands):
        c_bh, c_bins = numpy.histogram(c_band, bins=256)
        plt.plot(c_bins[:-1], c_bh, color=colour, linestyle='-', linewidth=2)
    if reference_data_multiple_bands:
        for colour, r_band in zip(colour_order, reference_data_multiple_bands):
            r_bh, r_bins = numpy.histogram(r_band, bins=256)
            plt.plot(
                r_bins[:-1], r_bh, color=colour, linestyle='--', linewidth=2)
    plt.xlabel('DN')
    plt.ylabel('Number of pixels')
    if x_limits:
        plt.xlim(x_limits)
    if y_limits:
        plt.ylim(y_limits)
    fig.savefig(file_name, bbox_inches='tight')
    plt.close(fig) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:26,代碼來源:display.py

示例11: print_roc

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def print_roc(self, y_true, y_scores, filename):
        '''
        Prints the ROC for this model.
        '''
        fpr, tpr, thresholds = metrics.roc_curve(y_true, y_scores)
        plt.figure()
        plt.plot(fpr, tpr, color='darkorange', label='ROC curve (area = %0.2f)' % self.roc_auc)
        plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('Receiver operating characteristic')
        plt.legend(loc="lower right")
        plt.savefig(filename)
        plt.close() 
開發者ID:aldengolab,項目名稱:fake-news-detection,代碼行數:18,代碼來源:model.py

示例12: plot_loss_change

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_loss_change(self, sma=1, n_skip_beginning=10, n_skip_end=5, y_lim=(-0.01, 0.01)):
        """
        Plots rate of change of the loss function.
        Parameters:
            sma - number of batches for simple moving average to smooth out the curve.
            n_skip_beginning - number of batches to skip on the left.
            n_skip_end - number of batches to skip on the right.
            y_lim - limits for the y axis.
        """
        derivatives = self.get_derivatives(sma)[n_skip_beginning:-n_skip_end]
        lrs = self.lrs[n_skip_beginning:-n_skip_end]
        plt.ylabel("rate of loss change")
        plt.xlabel("learning rate (log scale)")
        plt.plot(lrs, derivatives)
        plt.xscale('log')
        plt.ylim(y_lim)
        plt.show() 
開發者ID:surmenok,項目名稱:keras_lr_finder,代碼行數:19,代碼來源:lr_finder.py

示例13: plot_path_hist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def plot_path_hist(results, labels, tols, figsize, ylim=None):
    configure_plt()
    sns.set_palette('colorblind')
    n_competitors = len(results)
    fig, ax = plt.subplots(figsize=figsize)
    width = 1. / (n_competitors + 1)
    ind = np.arange(len(tols))
    b = (1 - n_competitors) / 2.
    for i in range(n_competitors):
        plt.bar(ind + (i + b) * width, results[i], width,
                label=labels[i])
    ax.set_ylabel('path computation time (s)')
    ax.set_xticks(ind + width / 2)
    plt.xticks(range(len(tols)), ["%.0e" % tol for tol in tols])
    if ylim is not None:
        plt.ylim(ylim)

    ax.set_xlabel(r"$\epsilon$")
    plt.legend(loc='upper left')
    plt.tight_layout()
    plt.show(block=False)
    return fig 
開發者ID:mathurinm,項目名稱:celer,代碼行數:24,代碼來源:plot_utils.py

示例14: show_classification_areas

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show() 
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py

示例15: _plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylim [as 別名]
def _plot(self, results, x, y, x_label, y_label, curve, filename):
        r"""
        Contains the actual plot functionality.
        """
        plt.plot(x, y)
        plt.xlabel(x_label)
        plt.ylabel(y_label)
        plt.ylim([0.0, 1.0])
        plt.xlim([0.0, 1.0])
        if results == 'test':
            plt.title('{} test set {} curve'.format(self.method, curve))
        else:
            plt.title('{} train set {} curve'.format(self.method, curve))
        if filename is not None:
            plt.savefig(filename + '_' + curve + '.pdf')
            plt.close()
        else:
            plt.show() 
開發者ID:Dru-Mara,項目名稱:EvalNE,代碼行數:20,代碼來源:score.py


注:本文中的matplotlib.pyplot.ylim方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。