本文整理匯總了Python中matplotlib.pyplot.ylabel方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.ylabel方法的具體用法?Python pyplot.ylabel怎麽用?Python pyplot.ylabel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.ylabel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_confusion_matrix
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_roc_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: plot_num_recall
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_num_recall(recalls, proposal_nums):
"""Plot Proposal_num-Recalls curve.
Args:
recalls(ndarray or list): shape (k,)
proposal_nums(ndarray or list): same shape as `recalls`
"""
if isinstance(proposal_nums, np.ndarray):
_proposal_nums = proposal_nums.tolist()
else:
_proposal_nums = proposal_nums
if isinstance(recalls, np.ndarray):
_recalls = recalls.tolist()
else:
_recalls = recalls
import matplotlib.pyplot as plt
f = plt.figure()
plt.plot([0] + _proposal_nums, [0] + _recalls)
plt.xlabel('Proposal num')
plt.ylabel('Recall')
plt.axis([0, proposal_nums.max(), 0, 1])
f.show()
示例4: plot_iou_recall
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_iou_recall(recalls, iou_thrs):
"""Plot IoU-Recalls curve.
Args:
recalls(ndarray or list): shape (k,)
iou_thrs(ndarray or list): same shape as `recalls`
"""
if isinstance(iou_thrs, np.ndarray):
_iou_thrs = iou_thrs.tolist()
else:
_iou_thrs = iou_thrs
if isinstance(recalls, np.ndarray):
_recalls = recalls.tolist()
else:
_recalls = recalls
import matplotlib.pyplot as plt
f = plt.figure()
plt.plot(_iou_thrs + [1.0], _recalls + [0.])
plt.xlabel('IoU')
plt.ylabel('Recall')
plt.axis([iou_thrs.min(), 1, 0, 1])
f.show()
示例5: compute_roc
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def compute_roc(y_true, y_pred, plot=False):
"""
TODO
:param y_true: ground truth
:param y_pred: predictions
:param plot:
:return:
"""
fpr, tpr, _ = roc_curve(y_true, y_pred)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例6: compute_roc_rfeinman
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
"""
TODO
:param probs_neg:
:param probs_pos:
:param plot:
:return:
"""
probs = np.concatenate((probs_neg, probs_pos))
labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
fpr, tpr, _ = roc_curve(labels, probs)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例7: data_stat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例8: visualize_sampling
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def visualize_sampling(self,permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
# Heatmap of attention (x=cities; y=steps)
示例9: visualize_sampling
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def visualize_sampling(self, permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
示例10: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot(PDF, figName, imgpath, show=False, save=True):
# plot
output = PDF.get_constraint_value()
plt.plot(PDF.experimentalDistances,PDF.experimentalPDF, 'ro', label="experimental", markersize=7.5, markevery=1 )
plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth=3.0, markevery=25, label="total" )
styleIndex = 0
for key in output:
val = output[key]
if key in ("pdf_total", "pdf"):
continue
elif "inter" in key:
plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery=5, label=key.split('rdf_inter_')[1] )
styleIndex+=1
plt.legend(frameon=False, ncol=1)
# set labels
plt.title("$\\chi^{2}=%.6f$"%PDF.squaredDeviations, size=20)
plt.xlabel("$r (\AA)$", size=20)
plt.ylabel("$g(r)$", size=20)
# show plot
if save: plt.savefig(figName)
if show: plt.show()
plt.close()
示例11: visualize_anomaly
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def visualize_anomaly(y_true, reconstruction_error, threshold):
error_df = pd.DataFrame({'reconstruction_error': reconstruction_error,
'true_class': y_true})
print(error_df.describe())
groups = error_df.groupby('true_class')
fig, ax = plt.subplots()
for name, group in groups:
ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='',
label="Fraud" if name == 1 else "Normal")
ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
ax.legend()
plt.title("Reconstruction error for different classes")
plt.ylabel("Reconstruction error")
plt.xlabel("Data point index")
plt.show()
示例12: plot_wh_methods
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi=200)
示例13: plot_12
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_12(data):
r1, r2, r3, r4 = data
plt.figure()
add_plot(r1, 'MeanReward100Episodes');
add_plot(r1, 'BestMeanReward', 'vanilla DQN');
add_plot(r2, 'MeanReward100Episodes');
add_plot(r2, 'BestMeanReward', 'double DQN');
plt.xlabel('Time step');
plt.ylabel('Reward');
plt.legend();
plt.savefig(
os.path.join('results', 'p12.png'),
bbox_inches='tight',
transparent=True,
pad_inches=0.1
)
示例14: plot_3
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_3(data):
x = data.Iteration.unique()
y_mean = data.groupby('Iteration').mean()
y_std = data.groupby('Iteration').std()
sns.set(style="darkgrid", font_scale=1.5)
value = 'AverageReturn'
plt.plot(x, y_mean[value], label=data['Condition'].unique()[0] + '_train');
plt.fill_between(x, y_mean[value] - y_std[value], y_mean[value] + y_std[value], alpha=0.2);
value = 'ValAverageReturn'
plt.plot(x, y_mean[value], label=data['Condition'].unique()[0] + '_test');
plt.fill_between(x, y_mean[value] - y_std[value], y_mean[value] + y_std[value], alpha=0.2);
plt.xlabel('Iteration')
plt.ylabel('AverageReturn')
plt.legend(loc='best')
示例15: plot_result_data
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import ylabel [as 別名]
def plot_result_data(acc_total, acc_val_total, loss_total, losss_val_total, cfg_path, epoch):
import matplotlib.pyplot as plt
y = range(epoch)
plt.plot(y,acc_total,linestyle="-", linewidth=1,label='acc_train')
plt.plot(y,acc_val_total,linestyle="-", linewidth=1,label='acc_val')
plt.legend(('acc_train', 'acc_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Acc on dataset")
plt.savefig('{}/acc.png'.format(cfg_path))
plt.cla()
plt.plot(y,loss_total,linestyle="-", linewidth=1,label='loss_train')
plt.plot(y,losss_val_total,linestyle="-", linewidth=1,label='loss_val')
plt.legend(('loss_train', 'loss_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Loss on dataset")
plt.savefig('{}/loss.png'.format(cfg_path))