本文整理匯總了Python中matplotlib.pyplot.xticks方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.xticks方法的具體用法?Python pyplot.xticks怎麽用?Python pyplot.xticks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.xticks方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_n_image
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_n_image(X, n):
""" plot first n images
n has to be a square number
"""
pic_size = int(np.sqrt(X.shape[1]))
grid_size = int(np.sqrt(n))
first_n_images = X[:n, :]
fig, ax_array = plt.subplots(nrows=grid_size, ncols=grid_size,
sharey=True, sharex=True, figsize=(8, 8))
for r in range(grid_size):
for c in range(grid_size):
ax_array[r, c].imshow(first_n_images[grid_size * r + c].reshape((pic_size, pic_size)))
plt.xticks(np.array([]))
plt.yticks(np.array([]))
示例2: data_stat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例3: plot_tsne
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_tsne(self, save_eps=False):
''' Plot TSNE figure. Set save_eps=True if you want to save a .eps file.
'''
tsne = TSNE(n_components=2, init='pca', random_state=0)
features = tsne.fit_transform(self.features)
x_min, x_max = np.min(features, 0), np.max(features, 0)
data = (features - x_min) / (x_max - x_min)
del features
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(self.labels[i]),
color=plt.cm.Set1(self.labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.title('T-SNE')
if save_eps:
plt.savefig('tsne.eps', dpi=600, format='eps')
plt.show()
示例4: make_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def make_plot(files, labels):
plt.figure()
for file_idx in range(len(files)):
rot_err, trans_err = read_csv(files[file_idx])
success_dict = count_success(trans_err)
x_range = success_dict.keys()
x_range.sort()
success = []
for i in x_range:
success.append(success_dict[i])
success = np.array(success)/total_cases
plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
# plt.scatter(x_range, success, s=50)
plt.ylabel('Success Ratio', fontsize=40)
plt.xlabel('Threshold for Translation Error', fontsize=40)
plt.tick_params(labelsize=40, width=3, length=10)
plt.grid(True)
plt.ylim(0,1.005)
plt.yticks(np.arange(0,1.2,0.2))
plt.xticks(np.arange(0,2.1,0.2))
plt.xlim(0,2)
plt.legend(fontsize=30, loc=4)
示例5: _plot_global_imp
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def _plot_global_imp(self, top_words, top_importances, label_name):
""" Function to plot the global importances
:param top_words: The tokenized words
:type top_words: str[]
:param top_importances: The associated feature importances
:type top_importances: float[]
:param label_name: The label predicted
:type label_name: str
"""
plt.figure(figsize=(8, 4))
plt.title(
"most important words for class label: " + str(label_name), fontsize=18
)
plt.bar(range(len(top_importances)), top_importances, color="b", align="center")
plt.xticks(range(len(top_importances)), top_words, rotation=60, fontsize=18)
plt.show()
示例6: _show_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
plt.locator_params(axis='y', nbins=3)
axes = plt.axes()
axes.yaxis.grid()
plt.plot(x_values, y_values, 'ro', color='red')
plt.ylim(ymin=-1.2, ymax=1.2)
plt.tight_layout(pad=5)
if x_labels:
plt.xticks(x_values, x_labels, rotation='vertical')
if y_labels:
plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
# Pad margins so that markers are not clipped by the axes
plt.margins(0.2)
plt.show()
#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#////////////////////////////////////////////////////////////
示例7: quality_over_time
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def quality_over_time(dfs, path, figformat, title, plot_settings={}):
time_qual = Plot(path=path + "TimeQualityViolinPlot." + figformat,
title="Violin plot of quality over time")
sns.set(style="white", **plot_settings)
ax = sns.violinplot(x="timebin",
y="quals",
data=dfs,
inner=None,
cut=0,
linewidth=0)
ax.set(xlabel='Interval (hours)',
ylabel="Basecall quality",
title=title or time_qual.title)
plt.xticks(rotation=45, ha='center', fontsize=8)
time_qual.fig = ax.get_figure()
time_qual.save(format=figformat)
plt.close("all")
return time_qual
示例8: sequencing_speed_over_time
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def sequencing_speed_over_time(dfs, path, figformat, title, plot_settings={}):
time_duration = Plot(path=path + "TimeSequencingSpeed_ViolinPlot." + figformat,
title="Violin plot of sequencing speed over time")
sns.set(style="white", **plot_settings)
if "timebin" not in dfs:
dfs['timebin'] = add_time_bins(dfs)
mask = dfs['duration'] != 0
ax = sns.violinplot(x=dfs.loc[mask, "timebin"],
y=dfs.loc[mask, "lengths"] / dfs.loc[mask, "duration"],
inner=None,
cut=0,
linewidth=0)
ax.set(xlabel='Interval (hours)',
ylabel="Sequencing speed (nucleotides/second)",
title=title or time_duration.title)
plt.xticks(rotation=45, ha='center', fontsize=8)
time_duration.fig = ax.get_figure()
time_duration.save(format=figformat)
plt.close("all")
return time_duration
示例9: save_movie_to_frame
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'):
# Collect to single image
image = movie_to_frame(images[idx])
# Flip it
# image = np.fliplr(image)
# image = np.flipud(image)
f = plt.figure(figsize=[12, 12])
plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1)
plt.axis('image')
plt.xticks([])
plt.yticks([])
plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
plt.close(f)
示例10: graph_query_amounts
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def graph_query_amounts(captcha_queries, query_amounts):
queries_and_amounts = zip(captcha_queries, query_amounts)
queries_and_amounts = sorted(queries_and_amounts, key=lambda x:x[1], reverse=True)
captcha_queries, query_amounts = zip(*queries_and_amounts)
# colours = cm.Dark2(np.linspace(0,1,len(captcha_queries)))
# legend_info = zip(query_numbers, colours)
# random.shuffle(colours)
# captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries]
bars = plt.bar(left=range(len(query_amounts)), height=query_amounts)
plt.xlabel('CAPTCHA queries.')
plt.ylabel('Query frequencies.')
plt.xticks([])
# plt.xticks(range(len(captcha_queries)), captcha_queries, rotation='vertical')
# colours = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w', ]
patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
plt.legend(handles=patches)
for i, bar in enumerate(bars):
bar.set_color(colours[i])
plt.show()
示例11: graph_correct_captchas
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def graph_correct_captchas(captcha_queries, correct_captchas):
queries_and_correct_scores = zip(captcha_queries, correct_captchas)
queries_and_correct_scores = sorted(queries_and_correct_scores, key=lambda x:x[1], reverse=True)
captcha_queries, correct_captchas = zip(*queries_and_correct_scores)
captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries]
bars = plt.bar(left=range(len(correct_captchas)), height=correct_captchas)
patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
plt.legend(handles=patches)
plt.xticks([])
for i, bar in enumerate(bars):
bar.set_color(colours[i])
plt.show()
# graph_correct_captchas(captcha_queries, correct_captchas)
# graph_query_amounts(captcha_queries, query_amounts)
示例12: plot_path_hist
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_path_hist(results, labels, tols, figsize, ylim=None):
configure_plt()
sns.set_palette('colorblind')
n_competitors = len(results)
fig, ax = plt.subplots(figsize=figsize)
width = 1. / (n_competitors + 1)
ind = np.arange(len(tols))
b = (1 - n_competitors) / 2.
for i in range(n_competitors):
plt.bar(ind + (i + b) * width, results[i], width,
label=labels[i])
ax.set_ylabel('path computation time (s)')
ax.set_xticks(ind + width / 2)
plt.xticks(range(len(tols)), ["%.0e" % tol for tol in tols])
if ylim is not None:
plt.ylim(ylim)
ax.set_xlabel(r"$\epsilon$")
plt.legend(loc='upper left')
plt.tight_layout()
plt.show(block=False)
return fig
示例13: show_classification_areas
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def show_classification_areas(X, Y, lr):
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(30, 25))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py
示例14: draw_bar
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def draw_bar(data, labels, width=None, xticks_font_fname=None, legend_kwargs=dict()):
n = len(labels)
m = len(data)
if not width:
width = 1. / (m + .6)
off = 1.
legend_bar = []
legend_text = []
for i, a in enumerate(data):
for j, b in enumerate(a):
assert n == len(b['data'])
ind = [off + k + (i + (1 - m) / 2) * width for k in range(n)]
bottom = [sum(d) for d in zip(*[c['data'] for c in a[j + 1:]])] or None
p = plt.bar(ind, b['data'], width, bottom=bottom, color=b.get('color'))
legend_bar.append(p[0])
legend_text.append(b['legend'])
ind = [off + i for i, label in enumerate(labels) if label is not None]
labels = [label for label in labels if label is not None]
font = FontProperties(fname=xticks_font_fname)
plt.xticks(ind, labels, fontproperties=font, ha='center')
plt.legend(legend_bar, legend_text, **legend_kwargs)
示例15: plotSigHeats
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plotSigHeats(signals,markets,start=0,step=2,size=1,iters=6):
"""
打印信號回測盈損熱度圖,尋找參數穩定島
"""
sigMat = pd.DataFrame(index=range(iters),columns=range(iters))
for i in range(iters):
for j in range(iters):
climit = start + i*step
wlimit = start + j*step
caps,poss = plotSigCaps(signals,markets,climit=climit,wlimit=wlimit,size=size,op=False)
sigMat[i][j] = caps[-1]
sns.heatmap(sigMat.values.astype(np.float64),annot=True,fmt='.2f',annot_kws={"weight": "bold"})
xTicks = [i+0.5 for i in range(iters)]
yTicks = [iters-i-0.5 for i in range(iters)]
xyLabels = [str(start+i*step) for i in range(iters)]
_, labels = plt.yticks(yTicks,xyLabels)
plt.setp(labels, rotation=0)
_, labels = plt.xticks(xTicks,xyLabels)
plt.setp(labels, rotation=90)
plt.xlabel('Loss Stop @')
plt.ylabel('Profit Stop @')
return sigMat