當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.xticks方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.xticks方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.xticks方法的具體用法?Python pyplot.xticks怎麽用?Python pyplot.xticks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.xticks方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_n_image

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_n_image(X, n):
    """ plot first n images
    n has to be a square number
    """
    pic_size = int(np.sqrt(X.shape[1]))
    grid_size = int(np.sqrt(n))

    first_n_images = X[:n, :]

    fig, ax_array = plt.subplots(nrows=grid_size, ncols=grid_size,
                                    sharey=True, sharex=True, figsize=(8, 8))

    for r in range(grid_size):
        for c in range(grid_size):
            ax_array[r, c].imshow(first_n_images[grid_size * r + c].reshape((pic_size, pic_size)))
            plt.xticks(np.array([]))
            plt.yticks(np.array([])) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:8_kmeans_pca.py

示例2: data_stat

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def data_stat():
    """data statistic"""
    audio_path = './data/esc10/audio/'
    class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
    nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
    rects = plt.bar(range(len(nums_each_class)), nums_each_class)

    index = list(range(len(nums_each_class)))
    plt.title('Numbers of each class for ESC-10 dataset')
    plt.ylim(ymax=60, ymin=0)
    plt.xticks(index, class_list, rotation=45)
    plt.ylabel("numbers")

    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')

    plt.tight_layout()
    plt.show() 
開發者ID:JasonZhang156,項目名稱:Sound-Recognition-Tutorial,代碼行數:21,代碼來源:data_analysis.py

示例3: plot_tsne

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_tsne(self, save_eps=False):
        ''' Plot TSNE figure. Set save_eps=True if you want to save a .eps file.
        '''
        tsne = TSNE(n_components=2, init='pca', random_state=0)
        features = tsne.fit_transform(self.features)
        x_min, x_max = np.min(features, 0), np.max(features, 0)
        data = (features - x_min) / (x_max - x_min)
        del features
        for i in range(data.shape[0]):
            plt.text(data[i, 0], data[i, 1], str(self.labels[i]),
                     color=plt.cm.Set1(self.labels[i] / 10.),
                     fontdict={'weight': 'bold', 'size': 9})
        plt.xticks([])
        plt.yticks([])
        plt.title('T-SNE')
        if save_eps:
            plt.savefig('tsne.eps', dpi=600, format='eps')
        plt.show() 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:20,代碼來源:feature_vis.py

示例4: make_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def make_plot(files, labels):
	plt.figure()
	for file_idx in range(len(files)):
		rot_err, trans_err = read_csv(files[file_idx])
		success_dict = count_success(trans_err)

		x_range = success_dict.keys()
		x_range.sort()
		success = []
		for i in x_range:
			success.append(success_dict[i])
		success = np.array(success)/total_cases

		plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
		# plt.scatter(x_range, success, s=50)
	plt.ylabel('Success Ratio', fontsize=40)
	plt.xlabel('Threshold for Translation Error', fontsize=40)
	plt.tick_params(labelsize=40, width=3, length=10)
	plt.grid(True)
	plt.ylim(0,1.005)
	plt.yticks(np.arange(0,1.2,0.2))
	plt.xticks(np.arange(0,2.1,0.2))
	plt.xlim(0,2)
	plt.legend(fontsize=30, loc=4) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:26,代碼來源:plot_threshold_vs_success_trans.py

示例5: _plot_global_imp

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def _plot_global_imp(self, top_words, top_importances, label_name):
        """ Function to plot the global importances
        :param top_words: The tokenized words
        :type top_words: str[]
        :param top_importances: The associated feature importances
        :type top_importances: float[]
        :param label_name: The label predicted
        :type label_name: str
        """

        plt.figure(figsize=(8, 4))
        plt.title(
            "most important words for class label: " + str(label_name), fontsize=18
        )
        plt.bar(range(len(top_importances)), top_importances, color="b", align="center")
        plt.xticks(range(len(top_importances)), top_words, rotation=60, fontsize=18)
        plt.show() 
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:19,代碼來源:unified_information.py

示例6: _show_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()

#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#//////////////////////////////////////////////////////////// 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:26,代碼來源:util.py

示例7: quality_over_time

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def quality_over_time(dfs, path, figformat, title, plot_settings={}):
    time_qual = Plot(path=path + "TimeQualityViolinPlot." + figformat,
                     title="Violin plot of quality over time")
    sns.set(style="white", **plot_settings)
    ax = sns.violinplot(x="timebin",
                        y="quals",
                        data=dfs,
                        inner=None,
                        cut=0,
                        linewidth=0)
    ax.set(xlabel='Interval (hours)',
           ylabel="Basecall quality",
           title=title or time_qual.title)
    plt.xticks(rotation=45, ha='center', fontsize=8)
    time_qual.fig = ax.get_figure()
    time_qual.save(format=figformat)
    plt.close("all")
    return time_qual 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:20,代碼來源:timeplots.py

示例8: sequencing_speed_over_time

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def sequencing_speed_over_time(dfs, path, figformat, title, plot_settings={}):
    time_duration = Plot(path=path + "TimeSequencingSpeed_ViolinPlot." + figformat,
                         title="Violin plot of sequencing speed over time")
    sns.set(style="white", **plot_settings)
    if "timebin" not in dfs:
        dfs['timebin'] = add_time_bins(dfs)
    mask = dfs['duration'] != 0
    ax = sns.violinplot(x=dfs.loc[mask, "timebin"],
                        y=dfs.loc[mask, "lengths"] / dfs.loc[mask, "duration"],
                        inner=None,
                        cut=0,
                        linewidth=0)
    ax.set(xlabel='Interval (hours)',
           ylabel="Sequencing speed (nucleotides/second)",
           title=title or time_duration.title)
    plt.xticks(rotation=45, ha='center', fontsize=8)
    time_duration.fig = ax.get_figure()
    time_duration.save(format=figformat)
    plt.close("all")
    return time_duration 
開發者ID:wdecoster,項目名稱:NanoPlot,代碼行數:22,代碼來源:timeplots.py

示例9: save_movie_to_frame

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'):
    # Collect to single image
    image = movie_to_frame(images[idx])

    # Flip it
    # image = np.fliplr(image)
    # image = np.flipud(image)

    f = plt.figure(figsize=[12, 12])
    plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1)

    plt.axis('image')
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close(f) 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:18,代碼來源:movie.py

示例10: graph_query_amounts

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def graph_query_amounts(captcha_queries, query_amounts):
    queries_and_amounts = zip(captcha_queries, query_amounts)
    queries_and_amounts = sorted(queries_and_amounts, key=lambda x:x[1], reverse=True)
    captcha_queries, query_amounts = zip(*queries_and_amounts)

    # colours = cm.Dark2(np.linspace(0,1,len(captcha_queries)))
    # legend_info = zip(query_numbers, colours)
    # random.shuffle(colours)
    # captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries] 
    bars = plt.bar(left=range(len(query_amounts)), height=query_amounts)
    plt.xlabel('CAPTCHA queries.')
    plt.ylabel('Query frequencies.')
    plt.xticks([])
    # plt.xticks(range(len(captcha_queries)), captcha_queries, rotation='vertical')
    
    # colours = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w', ]

    patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
    plt.legend(handles=patches)

    for i, bar in enumerate(bars):
        bar.set_color(colours[i])
    
    plt.show() 
開發者ID:nocturnaltortoise,項目名稱:recaptcha-cracker,代碼行數:26,代碼來源:main.py

示例11: graph_correct_captchas

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def graph_correct_captchas(captcha_queries, correct_captchas):
    queries_and_correct_scores = zip(captcha_queries, correct_captchas)
    queries_and_correct_scores = sorted(queries_and_correct_scores, key=lambda x:x[1], reverse=True)
    captcha_queries, correct_captchas = zip(*queries_and_correct_scores)

    captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries]
    bars = plt.bar(left=range(len(correct_captchas)), height=correct_captchas)

    patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
    plt.legend(handles=patches)
    plt.xticks([])

    for i, bar in enumerate(bars):
        bar.set_color(colours[i])

    plt.show()

# graph_correct_captchas(captcha_queries, correct_captchas)
# graph_query_amounts(captcha_queries, query_amounts) 
開發者ID:nocturnaltortoise,項目名稱:recaptcha-cracker,代碼行數:21,代碼來源:main.py

示例12: plot_path_hist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plot_path_hist(results, labels, tols, figsize, ylim=None):
    configure_plt()
    sns.set_palette('colorblind')
    n_competitors = len(results)
    fig, ax = plt.subplots(figsize=figsize)
    width = 1. / (n_competitors + 1)
    ind = np.arange(len(tols))
    b = (1 - n_competitors) / 2.
    for i in range(n_competitors):
        plt.bar(ind + (i + b) * width, results[i], width,
                label=labels[i])
    ax.set_ylabel('path computation time (s)')
    ax.set_xticks(ind + width / 2)
    plt.xticks(range(len(tols)), ["%.0e" % tol for tol in tols])
    if ylim is not None:
        plt.ylim(ylim)

    ax.set_xlabel(r"$\epsilon$")
    plt.legend(loc='upper left')
    plt.tight_layout()
    plt.show(block=False)
    return fig 
開發者ID:mathurinm,項目名稱:celer,代碼行數:24,代碼來源:plot_utils.py

示例13: show_classification_areas

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show() 
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py

示例14: draw_bar

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def draw_bar(data, labels, width=None, xticks_font_fname=None, legend_kwargs=dict()):
    n = len(labels)
    m = len(data)
    if not width:
        width = 1. / (m + .6)
    off = 1.
    legend_bar = []
    legend_text = []
    for i, a in enumerate(data):
        for j, b in enumerate(a):
            assert n == len(b['data'])
            ind = [off + k + (i + (1 - m) / 2) * width for k in range(n)]
            bottom = [sum(d) for d in zip(*[c['data'] for c in a[j + 1:]])] or None
            p = plt.bar(ind, b['data'], width, bottom=bottom, color=b.get('color'))
            legend_bar.append(p[0])
            legend_text.append(b['legend'])
    ind = [off + i for i, label in enumerate(labels) if label is not None]
    labels = [label for label in labels if label is not None]
    font = FontProperties(fname=xticks_font_fname)
    plt.xticks(ind, labels, fontproperties=font, ha='center')
    plt.legend(legend_bar, legend_text, **legend_kwargs) 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:23,代碼來源:plot_tools.py

示例15: plotSigHeats

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xticks [as 別名]
def plotSigHeats(signals,markets,start=0,step=2,size=1,iters=6):
    """
    打印信號回測盈損熱度圖,尋找參數穩定島
    """
    sigMat = pd.DataFrame(index=range(iters),columns=range(iters))
    for i in range(iters):
        for j in range(iters):
            climit = start + i*step
            wlimit = start + j*step
            caps,poss = plotSigCaps(signals,markets,climit=climit,wlimit=wlimit,size=size,op=False)
            sigMat[i][j] = caps[-1]
    sns.heatmap(sigMat.values.astype(np.float64),annot=True,fmt='.2f',annot_kws={"weight": "bold"})
    xTicks   = [i+0.5 for i in range(iters)]
    yTicks   = [iters-i-0.5 for i in range(iters)]
    xyLabels = [str(start+i*step) for i in range(iters)]
    _, labels = plt.yticks(yTicks,xyLabels)
    plt.setp(labels, rotation=0)
    _, labels = plt.xticks(xTicks,xyLabels)
    plt.setp(labels, rotation=90)
    plt.xlabel('Loss Stop @')
    plt.ylabel('Profit Stop @')
    return sigMat 
開發者ID:rjj510,項目名稱:uiKLine,代碼行數:24,代碼來源:visFunction.py


注:本文中的matplotlib.pyplot.xticks方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。