本文整理匯總了Python中matplotlib.pyplot.xlim方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.xlim方法的具體用法?Python pyplot.xlim怎麽用?Python pyplot.xlim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.xlim方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_roc_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例2: visualize_2D_trip
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
colors = ['red'] # Depot is first city
for i in range(len(tw_open)-1):
colors.append('blue')
plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with TW
tw_open = np.rint(tw_open)
tw_close = np.rint(tw_close)
time_window = np.concatenate((tw_open,tw_close),axis=1)
for tw, (x, y) in zip(time_window,(zip(X,Y))):
plt.annotate(tw,xy=(x, y))
plt.xlim(0,60)
plt.ylim(0,60)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例3: visualize_2D_trip
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def visualize_2D_trip(self, trip):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
plt.scatter(trip[:,0], trip[:,1], s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with order
labels = range(len(trip))
for i, (x, y) in zip(labels,(zip(X,Y))):
plt.annotate(i,xy=(x, y))
plt.xlim(0,100)
plt.ylim(0,100)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例4: plot_wh_methods
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi=200)
示例5: make_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def make_plot(files, labels):
plt.figure()
for file_idx in range(len(files)):
rot_err, trans_err = read_csv(files[file_idx])
success_dict = count_success(trans_err)
x_range = success_dict.keys()
x_range.sort()
success = []
for i in x_range:
success.append(success_dict[i])
success = np.array(success)/total_cases
plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
# plt.scatter(x_range, success, s=50)
plt.ylabel('Success Ratio', fontsize=40)
plt.xlabel('Threshold for Translation Error', fontsize=40)
plt.tick_params(labelsize=40, width=3, length=10)
plt.grid(True)
plt.ylim(0,1.005)
plt.yticks(np.arange(0,1.2,0.2))
plt.xticks(np.arange(0,2.1,0.2))
plt.xlim(0,2)
plt.legend(fontsize=30, loc=4)
示例6: plot_pixels
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_pixels(file_name, candidate_data_single_band,
reference_data_single_band, limits=None, fit_line=None):
logging.info('Display: Creating pixel plot - {}'.format(file_name))
fig = plt.figure()
plt.hexbin(
candidate_data_single_band, reference_data_single_band, mincnt=1)
if not limits:
min_value = 0
_, ymax = plt.gca().get_ylim()
_, xmax = plt.gca().get_xlim()
max_value = max([ymax, xmax])
limits = [min_value, max_value]
plt.plot(limits, limits, 'k-')
if fit_line:
start = limits[0] * fit_line.gain + fit_line.offset
end = limits[1] * fit_line.gain + fit_line.offset
plt.plot(limits, [start, end], 'g-')
plt.xlim(limits)
plt.ylim(limits)
plt.xlabel('Candidate DNs')
plt.ylabel('Reference DNs')
fig.savefig(file_name, bbox_inches='tight')
plt.close(fig)
示例7: plot_histograms
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_histograms(file_name, candidate_data_multiple_bands,
reference_data_multiple_bands=None,
# Default is for Blue-Green-Red-NIR:
colour_order=['b', 'g', 'r', 'y'],
x_limits=None, y_limits=None):
logging.info('Display: Creating histogram plot - {}'.format(file_name))
fig = plt.figure()
plt.hold(True)
for colour, c_band in zip(colour_order, candidate_data_multiple_bands):
c_bh, c_bins = numpy.histogram(c_band, bins=256)
plt.plot(c_bins[:-1], c_bh, color=colour, linestyle='-', linewidth=2)
if reference_data_multiple_bands:
for colour, r_band in zip(colour_order, reference_data_multiple_bands):
r_bh, r_bins = numpy.histogram(r_band, bins=256)
plt.plot(
r_bins[:-1], r_bh, color=colour, linestyle='--', linewidth=2)
plt.xlabel('DN')
plt.ylabel('Number of pixels')
if x_limits:
plt.xlim(x_limits)
if y_limits:
plt.ylim(y_limits)
fig.savefig(file_name, bbox_inches='tight')
plt.close(fig)
示例8: plot_mean_bootstrap_exponential_readme
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_mean_bootstrap_exponential_readme():
X = np.random.exponential(7, 4)
classical_samples = [np.mean(resample(X)) for _ in range(10000)]
posterior_samples = mean(X, 10000)
l, r = highest_density_interval(posterior_samples)
classical_l, classical_r = highest_density_interval(classical_samples)
plt.subplot(2, 1, 1)
plt.title('Bayesian Bootstrap of mean')
sns.distplot(posterior_samples, label='Bayesian Bootstrap Samples')
plt.plot([l, r], [0, 0], linewidth=5.0, marker='o', label='95% HDI')
plt.xlim(-1, 18)
plt.legend()
plt.subplot(2, 1, 2)
plt.title('Classical Bootstrap of mean')
sns.distplot(classical_samples, label='Classical Bootstrap Samples')
plt.plot([classical_l, classical_r], [0, 0], linewidth=5.0, marker='o', label='95% HDI')
plt.xlim(-1, 18)
plt.legend()
plt.savefig('readme_exponential.png', bbox_inches='tight')
示例9: print_roc
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def print_roc(self, y_true, y_scores, filename):
'''
Prints the ROC for this model.
'''
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_scores)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', label='ROC curve (area = %0.2f)' % self.roc_auc)
plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig(filename)
plt.close()
示例10: plot_progress_errk
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_progress_errk(self, claimed_acc=None, title='MobileNetV3', k=1):
tr_str = 'train_error{}'.format(k)
val_str = 'val_error{}'.format(k)
plt.figure(figsize=(9, 8), dpi=300)
plt.plot(self.data[tr_str], label='Training error')
plt.plot(self.data[val_str], label='Validation error')
if claimed_acc is not None:
plt.plot((0, len(self.data[tr_str])), (1 - claimed_acc, 1 - claimed_acc), 'k--',
label='Claimed validation error ({:.2f}%)'.format(100. * (1 - claimed_acc)))
plt.plot((0, len(self.data[tr_str])),
(np.min(self.data[val_str]), np.min(self.data[val_str])), 'r--',
label='Best validation error ({:.2f}%)'.format(100. * np.min(self.data[val_str])))
plt.title('Top-{} error for {}'.format(k, title))
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.legend()
plt.xlim(0, len(self.data[tr_str]) + 1)
plt.savefig(os.path.join(self.log_path, 'top{}-{}.png'.format(k, self.local_rank)))
示例11: plot_DOY
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def plot_DOY(dates, y, mpl_cmap):
""" Create a DOY plot
Args:
dates (iterable): sequence of datetime
y (np.ndarray): variable to plot
mpl_cmap (colormap): matplotlib colormap
"""
doy = np.array([d.timetuple().tm_yday for d in dates])
year = np.array([d.year for d in dates])
sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
marker='o', edgecolors='none', s=35)
plt.colorbar(sp)
months = mpl.dates.MonthLocator() # every month
months_fmrt = mpl.dates.DateFormatter('%b')
plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
plt.axes().xaxis.set_minor_locator(months)
plt.axes().xaxis.set_minor_formatter(months_fmrt)
plt.xlim(1, 366)
plt.xlabel('Day of Year')
示例12: show_classification_areas
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def show_classification_areas(X, Y, lr):
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(30, 25))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py
示例13: _plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def _plot(self, results, x, y, x_label, y_label, curve, filename):
r"""
Contains the actual plot functionality.
"""
plt.plot(x, y)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
if results == 'test':
plt.title('{} test set {} curve'.format(self.method, curve))
else:
plt.title('{} train set {} curve'.format(self.method, curve))
if filename is not None:
plt.savefig(filename + '_' + curve + '.pdf')
plt.close()
else:
plt.show()
示例14: test_filter
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def test_filter(self):
fs = 8000
f0 = 440
sin = np.array([np.sin(2.0 * np.pi * f0 * n / fs)
for n in range(fs * 1)])
noise = np.random.rand(len(sin)) - 0.5
wav = sin + noise
lpfed = low_pass_filter(wav, 500, n_taps=255, fs=fs)
hpfed = high_pass_filter(wav, 1000, n_taps=255, fs=fs)
lpfed_2d = low_pass_filter(np.vstack([wav, noise]).T, 500, fs=fs)
hpfed_2d = high_pass_filter(np.vstack([wav, noise]).T, 1000, fs=fs)
if saveflag:
plt.figure()
plt.plot(lpfed, label='lpf')
plt.plot(hpfed, label='hpf')
plt.legend()
plt.xlim(0, 100)
plt.savefig('filter.png')
示例15: save_precision_recall_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import xlim [as 別名]
def save_precision_recall_curve(eval_labels, pred_labels, average_precision, smell, config, out_folder, dim, method):
fig = plt.figure()
precision, recall, _ = precision_recall_curve(eval_labels, pred_labels)
step_kwargs = ({'step': 'post'}
if 'step' in signature(plt.fill_between).parameters
else {})
plt.step(recall, precision, color='b', alpha=0.2,
where='post')
plt.fill_between(recall, precision, alpha=0.2, color='b', **step_kwargs)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
if isinstance(config, cfg.CNN_config):
title_str = smell + " (" + method + " - " + dim + ") - L=" + str(config.layers) + ", E=" + str(config.epochs) + ", F=" + str(config.filters) + \
", K=" + str(config.kernel) + ", PW=" + str(config.pooling_window) + ", AP={0:0.2f}".format(average_precision)
# plt.title(title_str)
# plt.show()
file_name = get_plot_file_name(smell, config, out_folder, dim, method, "_prc_")
fig.savefig(file_name)