本文整理匯總了Python中matplotlib.pyplot.text方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.text方法的具體用法?Python pyplot.text怎麽用?Python pyplot.text使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.text方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_quality_histogram
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def draw_quality_histogram(items):
"""
畫質量直方圖
"""
from analyze.quality import get_item_quality
qualities = [get_item_quality(item) for item in items
if len(item.reviews) >= 20]
plt.title('質量直方圖')
plt.xlabel('質量')
plt.ylabel('分布密度')
plt.hist(qualities, bins=100, range=(0, 1), density=True)
# 擬合正態分布
mean = np.mean(qualities)
std = np.std(qualities)
x = np.arange(0, 1, 0.01)
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.text(0, 5, r'$N={},\mu={:.3f},\sigma={:.3f}$'
.format(len(qualities), mean, std))
示例2: data_stat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例3: plot_tsne
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def plot_tsne(self, save_eps=False):
''' Plot TSNE figure. Set save_eps=True if you want to save a .eps file.
'''
tsne = TSNE(n_components=2, init='pca', random_state=0)
features = tsne.fit_transform(self.features)
x_min, x_max = np.min(features, 0), np.max(features, 0)
data = (features - x_min) / (x_max - x_min)
del features
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(self.labels[i]),
color=plt.cm.Set1(self.labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.title('T-SNE')
if save_eps:
plt.savefig('tsne.eps', dpi=600, format='eps')
plt.show()
示例4: plot_attention
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def plot_attention(sentences, attentions, labels, **kwargs):
fig, ax = plt.subplots(**kwargs)
im = ax.imshow(attentions, interpolation='nearest',
vmin=attentions.min(), vmax=attentions.max())
plt.colorbar(im, shrink=0.5, ticks=[0, 1])
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
ax.set_yticks(range(len(labels)))
ax.set_yticklabels(labels, fontproperties=getChineseFont())
# Loop over data dimensions and create text annotations.
for i in range(attentions.shape[0]):
for j in range(attentions.shape[1]):
text = ax.text(j, i, sentences[i][j],
ha="center", va="center", color="b", size=10,
fontproperties=getChineseFont())
ax.set_title("Attention Visual")
fig.tight_layout()
plt.show()
示例5: draw_boxes
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def draw_boxes(filename, v_boxes, v_labels, v_scores, output_photo_name):
# load the image
data = pyplot.imread(filename)
# plot the image
pyplot.imshow(data)
# get the context for drawing boxes
ax = pyplot.gca()
# plot each box
for i in range(len(v_boxes)):
box = v_boxes[i]
# get coordinates
y1, x1, y2, x2 = box.ymin, box.xmin, box.ymax, box.xmax
# calculate width and height of the box
width, height = x2 - x1, y2 - y1
# create the shape
rect = Rectangle((x1, y1), width, height, fill=False, color='white')
# draw the box
ax.add_patch(rect)
# draw text and score in top left corner
label = "%s (%.3f)" % (v_labels[i], v_scores[i])
pyplot.text(x1, y1, label, color='white')
# show the plot
#pyplot.show()
pyplot.savefig(output_photo_name)
示例6: plot_embedding
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def plot_embedding(data, label, title):
ids = np.unique(label)
label_color = label.copy()
for i, label_id in enumerate(ids):
label_color[label_color==label_id] = i
x_min, x_max = np.min(data, 0), np.max(data, 0)
data = (data - x_min) / (x_max - x_min)
fig = plt.figure()
ax = plt.subplot(111)
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(label[i]),
color=plt.cm.Set1(label_color[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.title(title)
plt.show()
return fig
示例7: update
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def update(self, conf_mat, classes, normalize=False):
"""This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(conf_mat, interpolation='nearest', cmap=self.cmap)
plt.title(self.title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]
thresh = conf_mat.max() / 2.
for i, j in itertools.product(range(conf_mat.shape[0]), range(conf_mat.shape[1])):
plt.text(j, i, conf_mat[i, j],
horizontalalignment="center",
color="white" if conf_mat[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.draw()
示例8: draw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def draw(self):
self.title_canvas = tk.Canvas(self, bg=self.bgcolor, width=width, height=90, bd=0, highlightthickness=0, relief='ridge')
self.title_pic = self._resize_ads_qrcode(RES_APP_TITLE, size=(260, 90))
self.title_canvas.create_image(0, 0, anchor='nw', image=self.title_pic)
self.title_canvas.pack(padx=35, pady=15)
self.qrcode = tk.Canvas(self, bg=self.bgcolor, width=200, height=200)
#self.qrcode_pic = self._resize_ads_qrcode('qrcode.png', size=(200, 200))
#self.qrcode.create_image(0, 0, anchor='nw', image=self.qrcode_pic)
self.qrcode.pack(pady=30)
# 提示
self.lable_tip = tk.Label(self,
text='請稍等', # 標簽的文字
bg=self.bgcolor, # 背景顏色
font=('楷體',12), # 字體和字體大小
width=15, height=2 # 標簽長寬
)
self.lable_tip.pack(pady=2,fill=tk.BOTH) # 固定窗口位置
示例9: load_txt
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def load_txt(fname, polrep='stokes', pol_prim=None, pulse=ehc.PULSE_DEFAULT, zero_pol=True):
"""Read in an image from a text file.
Args:
fname (str): path to input text file
pulse (function): The function convolved with the pixel values for continuous image.
polrep (str): polarization representation, either 'stokes' or 'circ'
pol_prim (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for Circular
zero_pol (bool): If True, loads any missing polarizations as zeros
Returns:
(Image): loaded image object
"""
return ehtim.io.load.load_im_txt(fname, pulse=pulse, polrep=polrep,
pol_prim=pol_prim, zero_pol=True)
示例10: dict2circuit
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def dict2circuit(datamap, handler=None, blockdict=None, putstart=None):
'''
parse a dict (probabily from a yaml file) to a circuit.
Args:
datamap (dict): the dictionary defining a circuit.
handler (None|QuantumCircuit): the handler.
blockdict (dict, default=datamap): the dictionary for block includes.
putstart (bool, default=handler==None): put a start at the begining if True.
'''
if putstart is None: putstart = handler is None
if handler is None: handler = QuantumCircuit(num_bit=datamap['nline'])
if blockdict is None: blockdict = dict(datamap)
if putstart:
# text |0>s
for i in range(datamap['nline']):
plt.text(-0.4, -i, r'$\vert0\rangle$', va='center', ha='center', fontsize=setting['fontsize'])
handler.x += 0.8
if isinstance(datamap, str):
vizcode(handler, datamap, blockdict=blockdict)
else:
for block in datamap['blocks']:
dict2circuit(block, handler, blockdict, putstart=False)
示例11: test_edge
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def test_edge():
edge_list = ['-', '..-', '->--', '<=>', '===->', '->-....-<-']
clink_list = ['->', '<->', '>.>']
offsets = [(), (-0.2, 0.2), (0.15, 0.3, -0.3)]
with DynamicShow(figsize=(8, 6)) as ds:
for i, style in enumerate(edge_list):
edge = EdgeBrush(style, ds.ax)
p1 = Pin((0, -i * 0.1))
p2 = Pin((1, -i * 0.1))
ei = edge >> (p1, p2)
p1.text('"%s"'%style, 'left')
if i == 0: ei.text('EdgeBrush', 'top')
for j, (style, offset) in enumerate(zip(clink_list, offsets)):
p1 = Pin((0, -i * 0.1 - (j+1)*0.3))
p2 = Pin((1, -i * 0.1 - (j+1)*0.3))
clink = CLinkBrush(style, color='r', roundness=0.05, offsets=offset)
ei = clink >> (p1, p2)
if j == 0: ei.text('CLinkBrush', 'top')
p1.text('"%s", %s'%(style, str(offset)), 'left')
示例12: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def plot(args):
wc = pickle.load(open(os.path.join(args.data_dir, 'wc.dat'), 'rb'))
words = sorted(wc, key=wc.get, reverse=True)[:args.top_k]
if args.model == 'pca':
model = PCA(n_components=2)
elif args.model == 'tsne':
model = TSNE(n_components=2, perplexity=30, init='pca', method='exact', n_iter=5000)
word2idx = pickle.load(open('data/word2idx.dat', 'rb'))
idx2vec = pickle.load(open('data/idx2vec.dat', 'rb'))
X = [idx2vec[word2idx[word]] for word in words]
X = model.fit_transform(X)
plt.figure(figsize=(18, 18))
for i in range(len(X)):
plt.text(X[i, 0], X[i, 1], words[i], bbox=dict(facecolor='blue', alpha=0.1))
plt.xlim((np.min(X[:, 0]), np.max(X[:, 0])))
plt.ylim((np.min(X[:, 1]), np.max(X[:, 1])))
if not os.path.isdir(args.result_dir):
os.mkdir(args.result_dir)
plt.savefig(os.path.join(args.result_dir, args.model) + '.png')
示例13: cmPlot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def cmPlot(confMatrix, classes, normalize=False, title='Confusion matrix', cmap=[]):
if normalize:
confMatrix = confMatrix.astype('float') / confMatrix.sum(axis=1)[:, np.newaxis]
confMatrix = np.round(confMatrix * 100,1)
if cmap == []:
cmap = plt.cm.Blues
#Actual plotting of the values
thresh = confMatrix.max() / 2.
for i, j in itertools.product(range(confMatrix.shape[0]), range(confMatrix.shape[1])):
plt.text(j, i, confMatrix[i, j], horizontalalignment="center",
color="white" if confMatrix[i, j] > thresh else "black")
avgAcc = np.mean([float(confMatrix[i, i]) / sum(confMatrix[:, i]) for i in range(confMatrix.shape[1])])
plt.imshow(confMatrix, interpolation='nearest', cmap=cmap)
plt.title(title + " (avgAcc={:2.2f}%)".format(100*avgAcc))
plt.colorbar()
plt.xticks(np.arange(len(classes)), classes, rotation=45)
plt.yticks(np.arange(len(classes)), classes)
plt.ylabel('True label')
plt.xlabel('Predicted label')
開發者ID:Azure-Samples,項目名稱:MachineLearningSamples-ImageClassificationUsingCntk,代碼行數:23,代碼來源:utilities_general_v2.py
示例14: show_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def show_graph(g, vertex_color='typeof', size=15, vertex_label=None):
"""show_graph."""
degrees = [len(g.neighbors(u)) for u in g.nodes()]
print(('num nodes=%d' % len(g)))
print(('num edges=%d' % len(g.edges())))
print(('num non edges=%d' % len(list(nx.non_edges(g)))))
print(('max degree=%d' % max(degrees)))
print(('median degree=%d' % np.percentile(degrees, 50)))
draw_graph(g, size=size,
vertex_color=vertex_color, vertex_label=vertex_label,
vertex_size=200, edge_label=None)
# display degree distribution
size = int((max(degrees) - min(degrees)) / 1.5)
plt.figure(figsize=(size, 3))
plt.title('Degree distribution')
_bins = np.arange(min(degrees), max(degrees) + 2) - .5
n, bins, patches = plt.hist(degrees, _bins,
alpha=0.3,
facecolor='navy', histtype='bar',
rwidth=0.8, edgecolor='k')
labels = np.array([str(int(i)) for i in n])
for xi, yi, label in zip(bins, n, labels):
plt.text(xi + 0.5, yi, label, ha='center', va='bottom')
plt.xticks(bins + 0.5)
plt.xlim((min(degrees) - 1, max(degrees) + 1))
plt.ylim((0, max(n) * 1.1))
plt.xlabel('Node degree')
plt.ylabel('Counts')
plt.grid(linestyle=":")
plt.show()
示例15: plot_confusion_matrix
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import text [as 別名]
def plot_confusion_matrix(y_true, y_test, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
cm = confusion_matrix(y_true, y_test)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')