本文整理匯總了Python中matplotlib.pyplot.suptitle方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.suptitle方法的具體用法?Python pyplot.suptitle怎麽用?Python pyplot.suptitle使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.suptitle方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plotNNFilter
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例2: _plot_loss
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def _plot_loss(training_details, validation_details, note, output_graph_path, solver):
"""
Plots training/validation loss side by side.
"""
print "\tPlotting training/validation loss..."
fig, ax1 = plt.subplots()
ax1.plot(training_details["iters"], training_details["loss"], "b-")
ax1.set_xlabel("Iterations")
ax1.set_ylabel("Training Loss", color="b")
for tl in ax1.get_yticklabels():
tl.set_color("b")
ax2 = ax1.twinx()
ax2.plot(validation_details["iters"], validation_details["loss"], "r-")
ax2.set_ylabel("Validation Loss", color="r")
for tl in ax2.get_yticklabels():
tl.set_color("r")
plt.suptitle("Iterations vs. Training/Validation Loss", fontsize=14)
plt.title(_get_hyperparameter_details(note, solver), style="italic", fontsize=12)
filename = output_graph_path + ".loss.png"
plt.savefig(filename)
plt.close()
print("\t\tGraph saved to %s" % filename)
示例3: plot_results
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def plot_results(data, nth_iteration):
"""
Plots the list it receives and cuts off the first ten entries to circumvent the plotting of initial silence
:param data: A list of data to be plotted
:param nth_iteration: Used for the label of the x axis
"""
# Plot the data
plt.plot(data[10:])
# Label the axes
plt.xlabel('Time (every {}th {} byte)'.format(nth_iteration, CHUNK))
plt.ylabel('Volume level difference (in dB)')
# Calculate and output the absolute median difference level
plt.suptitle('Difference - Median (in dB): {}'.format(np.round(np.fabs(np.median(data)), decimals=5)), fontsize=14)
# Display the plotted graph
plt.show()
示例4: test_axes_labeling
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def test_axes_labeling():
from numpy.random import rand
key_set = (['male', 'female'], ['old', 'adult', 'young'],
['worker', 'unemployed'], ['yes', 'no'])
# the cartesian product of all the categories is
# the complete set of categories
keys = list(product(*key_set))
data = OrderedDict(zip(keys, rand(len(keys))))
lab = lambda k: ''.join(s[0] for s in k)
fig, (ax1, ax2) = pylab.subplots(1, 2, figsize=(16, 8))
mosaic(data, ax=ax1, labelizer=lab, horizontal=True, label_rotation=45)
mosaic(data, ax=ax2, labelizer=lab, horizontal=False,
label_rotation=[0, 45, 90, 0])
#fig.tight_layout()
fig.suptitle("correct alignment of the axes labels")
#pylab.show()
pylab.close('all')
示例5: queue
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def queue(self,filename):
plt.figure()
df = pd.read_csv('queue.csv')
size = df[df.Event == 'size'].copy()
ax1 = size.plot(x='Time',y='Queue Size')
# drop
try:
drop = df[df.Event == 'drop'].copy()
drop['Queue Size'] = df['Queue Size'] + 1
ax = drop.plot(x='Time',y='Queue Size',kind='scatter',marker='x',s=10,ax=ax1)
except:
pass
# set the axes
ax.set_xlabel('Time')
ax.set_ylabel('Queue Size (packets)')
plt.suptitle("")
plt.title("")
plt.savefig(filename)
示例6: sequence
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def sequence(self,filename):
plt.figure()
df = pd.read_csv('sequence.csv',dtype={'Time':float,'Sequence Number':int})
df['Sequence Number'] = df['Sequence Number'] / 1000 % 50
# send
send = df[df.Event == 'send'].copy()
ax1 = send.plot(x='Time',y='Sequence Number',kind='scatter',marker='s',s=2,figsize=(11,3))
# transmit
transmit = df[df.Event == 'transmit'].copy()
transmit.plot(x='Time',y='Sequence Number',kind='scatter',marker='s',s=2,figsize=(11,3),ax=ax1)
# drop
try:
drop = df[df.Event == 'drop'].copy()
drop.plot(x='Time',y='Sequence Number',kind='scatter',marker='x',s=10,figsize=(11,3),ax=ax1)
except:
pass
# ack
ack = df[df.Event == 'ack'].copy()
ax = ack.plot(x='Time',y='Sequence Number',kind='scatter',marker='.',s=2,figsize=(11,3),ax=ax1)
ax.set_xlim(left=-0.01)
ax.set_xlabel('Time')
ax.set_ylabel('Sequence Number')
plt.suptitle("")
plt.title("")
plt.savefig(filename,dpi=300)
示例7: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def main(self):
X_train, X_test = self.standard_scale(mnist.train.images, mnist.test.images)
original_imgs = X_test[:100]
plt.figure(1, figsize=(10, 10))
for i in range(0, 100):
im = original_imgs[i].reshape((28, 28))
ax = plt.subplot(10, 10, i + 1)
for label in (ax.get_xticklabels() + ax.get_yticklabels()):
label.set_fontsize(8)
plt.imshow(im, cmap="gray", clim=(0.0, 1.0))
plt.suptitle(' Original Images', fontsize=15, y=0.95)
plt.savefig('figures/original_images.png')
plt.show()
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:18,代碼來源:original_images_example.py
示例8: phase_shift_figure
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def phase_shift_figure(I,PR,type):
"""
Draw PSI Interferograms, several types.
"""
if type == "4-step":
f, axarr = __plt__.subplots(2, 2, figsize=(9, 9), dpi=80)
axarr[0, 0].imshow(-I[0], extent=[-PR,PR,-PR,PR],cmap=__cm__.Greys)
axarr[0, 0].set_title(r'$Phase\ shift: 0$',fontsize=16)
axarr[0, 1].imshow(-I[1], extent=[-PR,PR,-PR,PR],cmap=__cm__.Greys)
axarr[0, 1].set_title(r'$Phase\ shift: 1/2\pi$',fontsize=16)
axarr[1, 0].imshow(-I[2], extent=[-PR,PR,-PR,PR],cmap=__cm__.Greys)
axarr[1, 0].set_title(r'$Phase\ shift: \pi$',fontsize=16)
axarr[1, 1].imshow(-I[3], extent=[-PR,PR,-PR,PR],cmap=__cm__.Greys)
axarr[1, 1].set_title(r'$Phase\ shift: 3/2\pi$',fontsize=16)
__plt__.suptitle('4-step Phase Shift Interferograms',fontsize=16)
__plt__.show()
else:
print("No this type of figure")
示例9: plot_aep_boxplot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def plot_aep_boxplot(self, param, lab):
"""
Plot box plots of AEP results sliced by a specified Monte Carlo parameter
Args:
param( :obj:`list'): The Monte Carlo parameter on which to split the AEP results
lab(:obj:'str'): The name to use for the parameter when producing the figure
Returns:
(none)
"""
import matplotlib.pyplot as plt
sim_results = self.results
tmp_df=pd.DataFrame(data={'aep': sim_results.aep_GWh, 'param': param})
tmp_df.boxplot(column='aep',by='param',figsize=(8,6))
plt.ylabel('AEP (GWh/yr)')
plt.xlabel(lab)
plt.title('AEP estimates by %s' % lab)
plt.suptitle("")
plt.tight_layout()
return plt
示例10: show_shrinkage
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def show_shrinkage(shrink_func,theta,**kwargs):
tf.reset_default_graph()
tf.set_random_seed(kwargs.get('seed',1) )
N = kwargs.get('N',500)
L = kwargs.get('L',4)
nsigmas = kwargs.get('sigmas',10)
shape = (N,L)
rvar = 1e-4
r = np.reshape( np.linspace(0,nsigmas,N*L)*math.sqrt(rvar),shape)
r_ = tfcf(r)
rvar_ = tfcf(np.ones(L)*rvar)
xhat_,dxdr_ = shrink_func(r_,rvar_ ,tfcf(theta))
with tf.Session() as sess:
sess.run( tf.global_variables_initializer() )
xhat = sess.run(xhat_)
import matplotlib.pyplot as plt
plt.figure(1)
plt.plot(r.reshape(-1),r.reshape(-1),'y')
plt.plot(r.reshape(-1),xhat.reshape(-1),'b')
if kwargs.has_key('title'):
plt.suptitle(kwargs['title'])
plt.show()
示例11: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def plot(posterior_file, outputfile):
inside, membrane, outside = load_posterior_file(posterior_file)
plt.figure(figsize=(16, 8))
plt.title('Posterior probabilities')
plt.suptitle('tmhmm.py')
plt.plot(inside, label='inside', color='blue')
plt.plot(membrane, label='transmembrane', color='red')
plt.fill_between(range(len(inside)), membrane, color='red')
plt.plot(outside, label='outside', color='black')
plt.legend(frameon=False, bbox_to_anchor=[0.5, 0],
loc='upper center', ncol=3, borderaxespad=1.5)
plt.tight_layout(pad=3)
plt.savefig(outputfile)
示例12: draw_pz
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def draw_pz(self, tfcn):
"""Draw pzmap"""
self.f_pzmap.clf()
# Make adaptive window size, with min [-10, 10] in range,
# always atleast 25% extra space outside poles/zeros
tmp = list(self.zeros)+list(self.poles)+[8]
val = 1.25*max(abs(array(tmp)))
plt.figure(self.f_pzmap.number)
control.matlab.pzmap(tfcn)
plt.suptitle('Pole-Zero Diagram')
plt.axis([-val, val, -val, val])
示例13: redraw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def redraw(self):
""" Redraw all diagrams """
self.draw_pz(self.sys)
self.f_bode.clf()
plt.figure(self.f_bode.number)
control.matlab.bode(self.sys, logspace(-2, 2))
plt.suptitle('Bode Diagram')
self.f_nyquist.clf()
plt.figure(self.f_nyquist.number)
control.matlab.nyquist(self.sys, logspace(-2, 2))
plt.suptitle('Nyquist Diagram')
self.f_step.clf()
plt.figure(self.f_step.number)
try:
# Step seems to get intro trouble
# with purely imaginary poles
tvec, yvec = control.matlab.step(self.sys)
plt.plot(tvec.T, yvec)
except:
print("Error plotting step response")
plt.suptitle('Step Response')
self.canvas_pzmap.draw()
self.canvas_bode.draw()
self.canvas_step.draw()
self.canvas_nyquist.draw()
示例14: plot_draw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def plot_draw(self, x_axis: list, y_axis: list, latest_result):
y_axis_parsed = []
for y in y_axis:
try:
y_axis_parsed.append(y['best'])
except:
break
if y_axis_parsed:
y_axis = y_axis_parsed
plt.figure(1)
# self.subplot.set_xlim([self.plot_x_axis[0], self.plot_x_axis[-1]])
self.subplot.set_ylim([min(y_axis) - 5, max(y_axis) + 5])
plt.suptitle('Best solution so far: ' + re.sub("(.{64})", "\\1\n", str(latest_result), 0, re.DOTALL),
fontsize=10)
print(latest_result)
self.subplot.plot(x_axis, y_axis)
plt.figure(2)
for route_x, route_y in latest_result.plot_get_route_cords():
plt.plot(route_x, route_y)
plt.draw()
self.fig.savefig("plot-output.png")
self.fig_node_connector.savefig("plot2-output.png")
plt.pause(0.000001)
示例15: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import suptitle [as 別名]
def main():
vae = VAE(Z=32)
data = inmemory.MNIST()
steps_per_epoch = data.steps_per_epoch(32, "train")
loss_history = {"recon": [], "kld": []}
for epoch in range(1, 31):
print("\n\nEpoch", epoch)
for i, (x, y) in enumerate(data.stream(batch_size=32, subset="train")):
recon, kld = vae.train_on_batch(x)
loss_history["recon"].append(recon)
loss_history["kld"].append(kld)
print("\rDone: {:.2%} Reconstruction loss: {:.4f} KL-divergence: {:.4f}"
.format(i / steps_per_epoch,
np.mean(loss_history["recon"][-100:]),
np.mean(loss_history["kld"][-100:])), end="")
if i == steps_per_epoch:
break
if epoch == 20:
for optimizer in vae.optimizers:
print("DROPPED!!!")
optimizer.eta *= 0.1
for x, y in data.stream(subset="val", batch_size=1):
r, mse, kld = vae.reconstruct(x, return_loss=True)
r = r.reshape(x.shape)[0]
r, x = data.deprocess(r).squeeze(), data.deprocess(x[0]).squeeze()
fig, (left, right) = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(16, 9))
left.imshow(x)
right.imshow(r)
left.set_title("original")
right.set_title("reconstruction")
plt.suptitle("MSE: {:.4f} KLD: {:.4f}".format(mse, kld))
plt.tight_layout()
plt.show()