當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.set_cmap方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.set_cmap方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.set_cmap方法的具體用法?Python pyplot.set_cmap怎麽用?Python pyplot.set_cmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.set_cmap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _debug_save_map_nodes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def _debug_save_map_nodes(self, seed):
    """Saves traversible space along with nodes generated on the graph. Takes
    the seed as input."""
    img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
    node_xyt = self.to_actual_xyt_vec(self.task.nodes)
    plt.set_cmap('jet');
    fig, ax = utils.subplot(plt, (1,1), (12,12))
    ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
    ax.set_axis_off(); ax.axis('equal');
    
    if self.room_dims is not None:
      for i, r in enumerate(self.room_dims['dims']*1):
        min_ = r[:3]*1
        max_ = r[3:]*1
        xmin, ymin, zmin = min_
        xmax, ymax, zmax = max_

        ax.plot([xmin, xmax, xmax, xmin, xmin],
                [ymin, ymin, ymax, ymax, ymin], 'g')
    ax.imshow(self.traversible, origin='lower');
    with fu.fopen(img_path, 'w') as f:
      fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:nav_env.py

示例2: init_figure

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def init_figure(self):
        self.init_fig = True
        if self.args.figure == True:# and self.obj_fig==None:
            self.obj_fig = plt.figure(figsize=(16,12))
            plt.set_cmap('viridis')

            self.gridspec = gridspec.GridSpec(3,5)
            self.ax_map = plt.subplot(self.gridspec[0,0])
            self.ax_scan = plt.subplot(self.gridspec[1,0])
            self.ax_pose =  plt.subplot(self.gridspec[2,0])

            self.ax_bel =  plt.subplot(self.gridspec[0,1])
            self.ax_lik =  plt.subplot(self.gridspec[1,1])
            self.ax_gtl =  plt.subplot(self.gridspec[2,1])


            self.ax_pbel =  plt.subplot(self.gridspec[0,2:4])
            self.ax_plik =  plt.subplot(self.gridspec[1,2:4])
            self.ax_pgtl =  plt.subplot(self.gridspec[2,2:4])

            self.ax_act = plt.subplot(self.gridspec[0,4])
            self.ax_rew = plt.subplot(self.gridspec[1,4])
            self.ax_err = plt.subplot(self.gridspec[2,4])

            plt.subplots_adjust(hspace = 0.4, wspace=0.4, top=0.95, bottom=0.05) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:27,代碼來源:dal.py

示例3: plot_sff2

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def plot_sff2(SFF, walls, i):
    """
    plots a numbered image. Useful for making movies
    """
    print("plot_sff: %.6d"%i)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.cla()
    plt.set_cmap('jet')
    cmap = plt.get_cmap()
    cmap.set_bad(color='k', alpha=0.8)
    vect = SFF * walls
    vect[vect < 0] = np.Inf
#    print (vect)
    max_value = np.max(SFF)
    min_value = np.min(SFF)
    plt.imshow(vect, cmap=cmap, interpolation='nearest', vmin=min_value, vmax=max_value, extent=[0, dim_y, 0, dim_x])  # lanczos nearest
    plt.colorbar()
 #   print(i)
    plt.title("%.6d"%i)
    figure_name = os.path.join('sff', '%.6d.png'%i)
    plt.savefig(figure_name)
    plt.close() 
開發者ID:chraibi,項目名稱:cellular_automata,代碼行數:25,代碼來源:cellular_automaton.py

示例4: plot_sff

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def plot_sff(SFF, walls):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.cla()
    plt.set_cmap('jet')
    cmap = plt.get_cmap()
    cmap.set_bad(color='k', alpha=0.8)
    vect = SFF.copy()
    vect[walls < 0] = np.Inf
    max_value = np.max(SFF)
    min_value = np.min(SFF)
    plt.imshow(vect, cmap=cmap, interpolation='nearest', vmin=min_value, vmax=max_value, extent=[0, dim_y, 0, dim_x])  # lanczos nearest
    plt.colorbar()
    figure_name = os.path.join('sff', 'SFF.png')
    plt.savefig(figure_name, dpi=600)
    plt.close() 
開發者ID:chraibi,項目名稱:cellular_automata,代碼行數:18,代碼來源:cellular_automaton.py

示例5: plot_dff

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def plot_dff(dff, walls, name="DFF", max_value=None, title=""):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.cla()
    plt.set_cmap('jet')    
    cmap = plt.get_cmap()
    cmap.set_bad(color='k', alpha=0.8)
    vect =  dff.copy()
    vect[walls < 0] = np.Inf
    im = ax.imshow(vect, cmap=cmap, interpolation='nearest', vmin=0, vmax=max_value, extent=[0, dim_y, 0, dim_x])  # lanczos nearest
    plt.colorbar(im, format='%.1f')
    #cbar = plt.colorbar()
    if title:
        plt.title(title)

    figure_name = os.path.join('dff', name+'.png')
    plt.savefig(figure_name, dpi=600)
    plt.close()
    logging.info("plot dff. figure: {}.png".format(name)) 
開發者ID:chraibi,項目名稱:cellular_automata,代碼行數:21,代碼來源:cellular_automaton.py

示例6: plot_matrix_and_get_image

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def plot_matrix_and_get_image(plot_data, fig_height=8, fig_width=12, axis_off=False, colormap="jet"):
    fig = plt.figure()
    fig.set_figheight(fig_height)
    fig.set_figwidth(fig_width)
    plt.matshow(plot_data, fig.number)

    if fig_height < fig_width:
        plt.colorbar(orientation="horizontal")
    else:
        plt.colorbar(orientation="vertical")

    plt.set_cmap(colormap)
    if axis_off:
        plt.axis('off')

    img = fig_to_img(fig)
    plt.close(fig)
    return img 
開發者ID:emreaksan,項目名稱:deepwriting,代碼行數:20,代碼來源:utils_visualization.py

示例7: visualize_pc_dataset

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def visualize_pc_dataset(dataset_filepath):

    dataset = import_python_file(dataset_filepath)
    dataset_reader = PairedCompDatasetReader(dataset)
    tensor_pvs_pvs_subject = dataset_reader.opinion_score_3darray

    plt.figure()
    # plot the rate of winning x, 0 <= x <= 1.0, of one PVS compared against another PVS
    mtx_pvs_pvs = np.nansum(tensor_pvs_pvs_subject, axis=2) \
                  / (np.nansum(tensor_pvs_pvs_subject, axis=2) +
                     np.nansum(tensor_pvs_pvs_subject, axis=2).transpose())
    plt.imshow(mtx_pvs_pvs, interpolation='nearest')
    plt.title(r'Paired Comparison Winning Rate')
    plt.ylabel(r"PVS ($j$)")
    plt.xlabel(r"PVS ($j'$) [Compared Against]")
    plt.set_cmap('jet')
    plt.colorbar()
    plt.tight_layout() 
開發者ID:Netflix,項目名稱:sureal,代碼行數:20,代碼來源:routine.py

示例8: draw_lines

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def draw_lines(num_samples, sample_rate, lines):
    """Debugging function to draw detected lines in black"""
    lines_matrix = np.zeros((num_samples, num_samples))
    for line in lines:
        lines_matrix[line.lag:line.lag + 4, line.start:line.end + 1] = 1

    # Import here since this function is only for debugging
    import librosa.display
    import matplotlib.pyplot as plt
    librosa.display.specshow(
        lines_matrix,
        y_axis='time',
        x_axis='time',
        sr=sample_rate / (N_FFT / 2048))
    plt.colorbar()
    plt.set_cmap("hot_r")
    plt.show() 
開發者ID:vivjay30,項目名稱:pychorus,代碼行數:19,代碼來源:helpers.py

示例9: _vis_readout_maps

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N):
  # outputs is [gt_map, pred_map]:
  if N >= 0:
    outputs = outputs[:N]
  N = len(outputs)

  plt.set_cmap('jet')
  fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5))
  axes = axes.ravel()[::-1].tolist()
  for i in range(N):
    gt_map, pred_map = outputs[i]
    for j in [0]:
      for k in range(gt_map.shape[4]):
        # Display something like the midpoint of the trajectory.
        id = np.int(gt_map.shape[1]/2)

        ax = axes.pop();
        ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none',
                  vmin=0., vmax=1.)
        ax.set_axis_off();
        if i == 0: ax.set_title('gt_map')

        ax = axes.pop();
        ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none',
                  vmin=0., vmax=1.)
        ax.set_axis_off();
        if i == 0: ax.set_title('pred_map')

  file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step))
  with fu.fopen(file_name, 'w') as f:
    fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
  plt.close(fig) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:cmp_summary.py

示例10: plot_optimizer

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def plot_optimizer(opt, lower, upper):
    import matplotlib.pyplot as plt
    plt.set_cmap("viridis")

    if not opt.models:
        print('Can not plot opt, since models do not exist yet.')
        return
    model = opt.models[-1]
    x = np.linspace(lower, upper).reshape(-1, 1)
    x_model = opt.space.transform(x)

    # Plot Model(x) + contours
    y_pred, sigma = model.predict(x_model, return_std=True)
    plt.plot(x, -y_pred, "g--", label=r"$\mu(x)$")
    plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([-y_pred - 1.9600 * sigma,
                             (-y_pred + 1.9600 * sigma)[::-1]]),
             alpha=.2, fc="g", ec="None")

    # Plot sampled points
    plt.plot(opt.Xi, -np.array(opt.yi),
             "r.", markersize=8, label="Observations")

    # Adjust plot layout
    plt.grid()
    plt.legend(loc='best')
    plt.show() 
開發者ID:thomasahle,項目名稱:fastchess,代碼行數:29,代碼來源:tune.py

示例11: visualize_att

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def visualize_att(image_path, seq, alphas, rev_word_map, smooth=True):
    """
    Visualizes caption with weights at every word.

    Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb

    :param image_path: path to image that has been captioned
    :param seq: caption
    :param alphas: weights
    :param rev_word_map: reverse word mapping, i.e. ix2word
    :param smooth: smooth weights?
    """
    image = Image.open(image_path)
    image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)

    words = [rev_word_map[ind] for ind in seq]

    for t in range(len(words)):
        if t > 50:
            break
        plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)

        plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
        plt.imshow(image)
        current_alpha = alphas[t, :]
        if smooth:
            alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
        else:
            alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
        if t == 0:
            plt.imshow(alpha, alpha=0)
        else:
            plt.imshow(alpha, alpha=0.8)
        plt.set_cmap(cm.Greys_r)
        plt.axis('off')
    plt.show() 
開發者ID:sgrvinod,項目名稱:a-PyTorch-Tutorial-to-Image-Captioning,代碼行數:38,代碼來源:caption.py

示例12: sitk_show

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def sitk_show(nda, title=None, margin=0.0, dpi=40):
    figsize = (1 + margin) * nda.shape[0] / dpi, (1 + margin) * nda.shape[1] / dpi

    extent = (0, nda.shape[1], nda.shape[0], 0)
    fig = plt.figure(figsize=figsize, dpi=dpi)
    ax = fig.add_axes([margin, margin, 1 - 2*margin, 1 - 2*margin])

    plt.set_cmap("gray")
    for k in range(0,nda.shape[2]):
        print "printing slice "+str(k)
        ax.imshow(np.squeeze(nda[:,:,k]),extent=extent,interpolation=None)
        plt.draw()
        plt.pause(0.1)
        #plt.waitforbuttonpress() 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:16,代碼來源:utilities.py

示例13: init_figure

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def init_figure(self):
        self.init_fig = True
        if self.args.figure == True:# and self.obj_fig==None:
            self.obj_fig = plt.figure(figsize=(16,12))
            plt.set_cmap('viridis')

            self.gridspec = gridspec.GridSpec(3,5)
            self.ax_map = plt.subplot(self.gridspec[0,0])
            self.ax_scan = plt.subplot(self.gridspec[1,0])
            self.ax_pose =  plt.subplot(self.gridspec[2,0])

            self.ax_bel =  plt.subplot(self.gridspec[0,1])
            self.ax_lik =  plt.subplot(self.gridspec[1,1])
            self.ax_gtl =  plt.subplot(self.gridspec[2,1])


            # self.ax_prior =  plt.subplot(self.gridspec[2,1])
            self.ax_pbel =  plt.subplot(self.gridspec[0,2:4])
            self.ax_plik =  plt.subplot(self.gridspec[1,2:4])
            self.ax_pgtl =  plt.subplot(self.gridspec[2,2:4])

            self.ax_act = plt.subplot(self.gridspec[0,4])
            self.ax_rew = plt.subplot(self.gridspec[1,4])
            self.ax_err = plt.subplot(self.gridspec[2,4])

            plt.subplots_adjust(hspace = 0.4, wspace=0.4, top=0.95, bottom=0.05) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:28,代碼來源:dal_ros_aml.py

示例14: doubleslit

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def doubleslit(b=0.1,a=0.4,lambda_1=632,z=0.5):
    """
    Return a Young's doubleslit(Frauhofer Diffraction)
    Input:
    --------------------------------
    b: slit of width in mm
    a: slit separation of in mm
    lambda_1: wavelength in nm
    z: slit-to-screen distance in m.
    """
    lambda_1 = float(lambda_1)
    theta = __np__.linspace(-0.04,0.04,1000)
    theta1 = __np__.ones(100)
    [theta,theta1] = __np__.meshgrid(theta,theta1)
    beta = __np__.pi*(b/1000)/(lambda_1/(10**9))*__sin__(theta)
    alpha = __np__.pi*(a/1000)/(lambda_1/(10**9))*__sin__(theta)
    y = 4*(__sin__(beta)**2/(beta**2)*__cos__(alpha)**2)
    fig = __plt__.figure(1,figsize=(12,8), dpi=80)
    __plt__.imshow(-y)
    __plt__.set_cmap('Greys')
    __plt__.show()
    
    theta = __np__.linspace(-0.04,0.04,1000)
    beta = __np__.pi*(b/1000)/(lambda_1/(10**9))*__sin__(theta)
    alpha = __np__.pi*(a/1000)/(lambda_1/(10**9))*__sin__(theta)
    y = 4*(__sin__(beta)**2/(beta**2)*__cos__(alpha)**2)
    y1 = 4*__sin__(beta)**2/(beta**2)
    fig = __plt__.figure(2,figsize=(12, 8), dpi=80)
    __plt__.plot(theta*z*1000,y)
    __plt__.plot(theta*z*1000,y1,"g--")
    __plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:33,代碼來源:diffraction123.py

示例15: __apershow__

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import set_cmap [as 別名]
def __apershow__(obj, extent):
	if extent != 0:
		obj = -abs(obj)
		__plt__.imshow(obj, extent = [-extent/2,extent/2,-extent/2,extent/2])
		__plt__.set_cmap('Greys')
		__plt__.show()
	else:
		obj = -abs(obj)
		__plt__.imshow(obj)
		__plt__.set_cmap('Greys')
		__plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:13,代碼來源:tools.py


注:本文中的matplotlib.pyplot.set_cmap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。