當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.semilogy方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.semilogy方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.semilogy方法的具體用法?Python pyplot.semilogy怎麽用?Python pyplot.semilogy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.semilogy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: drawXYPlotByFactor

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def drawXYPlotByFactor(dataDict, xlabel='', ylabel='', legend=None,
                       title=None, logy=False, location=5):
    # Assuming that the data is in the format { factor: [(x1, y1),(x2,y2),...] }
    PLOT_STYLES = ['r^-', 'bo-', 'g^-', 'ks-', 'ms-', 'co-', 'y^-']
    styleCount = 0
    displayedPlots = []
    pltfn = plt.semilogy if logy else plt.plot
    for factor in dataDict:
        xpoints = [a[0] for a in dataDict[factor]]
        ypoints = [a[1] for a in dataDict[factor]]
        displayedPlots.append(pltfn(xpoints, ypoints, PLOT_STYLES[styleCount]))
        styleCount = min(styleCount+1, len(PLOT_STYLES)-1)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    if legend is None:
        plt.legend(dataDict.keys(), loc=location)
    else:
        plt.legend(legend, loc=location)
    if title is not None:
        plt.title(title)
    plt.show() 
開發者ID:shayakbanerjee,項目名稱:ultimate-ttt-rl,代碼行數:23,代碼來源:plotting.py

示例2: plot_beta

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot_beta():
    '''plot beta over training
    '''
    beta = args.beta
    scale = args.scale
    beta_min = args.beta_min
    num_epoch = args.num_epoch
    epoch_size = int(float(args.num_examples) / args.batch_size)

    x = np.arange(num_epoch*epoch_size)
    y = beta * np.power(scale, x)
    y = np.maximum(y, beta_min)
    epoch_x = np.arange(num_epoch) * epoch_size
    epoch_y = beta * np.power(scale, epoch_x)
    epoch_y = np.maximum(epoch_y, beta_min)

    # plot beta descent curve
    plt.semilogy(x, y)
    plt.semilogy(epoch_x, epoch_y, 'ro')
    plt.title('beta descent')
    plt.ylabel('beta')
    plt.xlabel('epoch')
    plt.show() 
開發者ID:luoyetx,項目名稱:mx-lsoftmax,代碼行數:25,代碼來源:plot_beta.py

示例3: plot_error

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot_error(e, fname=None):
    """ Plot the squared error versus time

    Inputs:
        e: vector of the error versus time
        fname: what filename to export the figure to. If None, then doesn't
        export

    """
    plt.figure()
    n = np.arange(len(e))
    e2 = np.power(e, 2)
    plt.plot(n, e2)
    #plt.semilogy(n, e2)
    plt.xlabel('Iteration')
    plt.ylabel('Squared error')
    if fname:
        plt.savefig(fname)
        plt.close() 
開發者ID:awesomebytes,項目名稱:parametric_modeling,代碼行數:21,代碼來源:lms.py

示例4: plot_loss

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot_loss(loss_list, log_dir, iter_id):
  def running_mean(x, N):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / N
  plt.figure()
  plt.semilogy(loss_list, '.', alpha=0.2, label="Loss")
  plt.semilogy(running_mean(loss_list,100), label="Average Loss")
  plt.xlabel('Iterations')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid()
  ax = plt.subplot(111)
  ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05),
        ncol=3, fancybox=True, shadow=True)
  plt.savefig(log_dir + "/fig_loss_iter_" + str(iter_id) + ".pdf")
  print("figure plotted")
  plt.close() 
開發者ID:JianGoForIt,項目名稱:YellowFin,代碼行數:19,代碼來源:resnet_utils.py

示例5: plot_loss_history

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot_loss_history(losshistory):
    loss_train = np.sum(
        np.array(losshistory.loss_train) * losshistory.loss_weights, axis=1
    )
    loss_test = np.sum(
        np.array(losshistory.loss_test) * losshistory.loss_weights, axis=1
    )

    plt.figure()
    plt.semilogy(losshistory.steps, loss_train, label="Train loss")
    plt.semilogy(losshistory.steps, loss_test, label="Test loss")
    for i in range(len(losshistory.metrics_test[0])):
        plt.semilogy(
            losshistory.steps,
            np.array(losshistory.metrics_test)[:, i],
            label="Test metric",
        )
    plt.xlabel("# Steps")
    plt.legend() 
開發者ID:lululxvi,項目名稱:deepxde,代碼行數:21,代碼來源:postprocessing.py

示例6: semilogy

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None, legend=None):
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        plt.semilogy(x2_vals, y2_vals, linestyle=':')
        plt.legend(legend)
    plt.show() 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:10,代碼來源:utils.py

示例7: plot_error

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot_error(scales, relativ_error, scale0, title='', label=''):
    plt.semilogy(scales, relativ_error, label=label)
    plt.vlines(scale0, np.nanmin(relativ_error), 1)
    plt.xlabel('scales')
    plt.ylabel('Relative error')
    plt.title(title)
    plt.legend(frameon=False, framealpha=0.5)
    plt.axis([min(scales), max(scales), np.nanmin(relativ_error), 1]) 
開發者ID:pbrod,項目名稱:numdifftools,代碼行數:10,代碼來源:_find_default_scale.py

示例8: spectral_centroid

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def spectral_centroid(file):
    y, sr = librosa.load(file)
    cent = librosa.feature.spectral_centroid(y=y, sr=sr)

    plt.figure()
    plt.semilogy(cent.T, label='Spectral centroid')
    plt.ylabel('Hz')
    plt.xticks([])
    plt.xlim([0, cent.shape[-1]])
    plt.legend()
    plt.title('log Power spectrogram')
    plt.tight_layout() 
開發者ID:tympanix,項目名稱:subsync,代碼行數:14,代碼來源:test.py

示例9: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot(values, metric_name):

    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import sys

    plt.style.use('ggplot')

    fig, ax = plt.subplots(1, 1, figsize=(25, 3))
    ax.margins(0)

    x = []
    y = []
    for index,v in enumerate( values ):
        # if not index: continue
        # plt.plot(x, new_recall, linewidth=2, label='Condensed Mem Network')
        x.append(index)
        y.append(v[1]['our']-v[1]['jpeg'])

    # plt.plot(x,y, 'o')
    # plt.semilogy(x,y)
    y_neg = [max(0,i) for i in y]
    y_pos = [min(0,i) for i in y]

    plt.bar(x,y_neg)
    plt.bar(x,y_pos, color='r')
    plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')

    plt.title(metric_name.upper(), x=0.5, y=0.8, fontsize=14)
    plt.legend(loc='')
    ax.get_xaxis().set_visible(False)
    ax.xaxis.set_major_formatter(plt.NullFormatter())
    fig.tight_layout()
    # plt.savefig('plot_size_' + metric_name + '.png', bbox_inches='tight_layout', pad_inches=0)
    plt.savefig('plot_kodak_' + metric_name + '.png') 
開發者ID:iamaaditya,項目名稱:image-compression-cnn,代碼行數:38,代碼來源:read_log.py

示例10: test_log

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def test_log():
    fig, axs = plt.subplots(2, 2, figsize=(10, 10))
    for ax in axs[0]:
        hep.histplot([1, 2, 3, 2], range(5), ax=ax)
    plt.semilogy()
    for ax in axs[1]:
        hep.histplot([1, 2, 3, 2], range(5), ax=ax, edges=False)
    plt.semilogy()
    return fig 
開發者ID:scikit-hep,項目名稱:mplhep,代碼行數:11,代碼來源:test.py

示例11: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot():
    print(hyperparams.methodEvalString())

    _, true_inl, _, R_errs, t_errs = cache.getOrEval()
    assert R_errs[0] is not None

    plt.semilogy(
         true_inl, R_errs, 'o', label='R')
    plt.semilogy(
         true_inl, t_errs, 'v', label='t') 
開發者ID:uzh-rpg,項目名稱:imips_open,代碼行數:12,代碼來源:plot_r_t.py

示例12: get_esd_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def get_esd_plot(eigenvalues, weights):
    density, grids = density_generate(eigenvalues, weights)
    plt.semilogy(grids, density + 1.0e-7)
    plt.ylabel('Density (Log Scale)', fontsize=14, labelpad=10)
    plt.xlabel('Eigenvlaue', fontsize=14, labelpad=10)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.axis([np.min(eigenvalues) - 1, np.max(eigenvalues) + 1, None, None])
    plt.tight_layout()
    plt.savefig('example.pdf') 
開發者ID:amirgholami,項目名稱:PyHessian,代碼行數:12,代碼來源:density_plot.py

示例13: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot(self):
        from matplotlib import pyplot
        pyplot.figure()
        it_ls = [] #ls = lineseach
        y_ls = []
        it_ga = [] #gradient approximation
        y_ga = []
        gradApprox = False
        for i in range(len(self.x)):
            y = norm( self.f_x[i] ) + 10**-9
            if i in self.notes:
                if self.notes[i] == 'starting gradient approximation':
                    gradApprox = True
                if self.notes[i] == 'finished gradient approximation':
                    gradApprox = False
            if gradApprox:
                it_ga.append( i )
                y_ga.append( y ) 
            else:
                it_ls.append( i )
                y_ls.append( y )
        pyplot.semilogy( it_ls, y_ls, 'go') 
        pyplot.semilogy( it_ga, y_ga, 'bx') 
        pyplot.xlabel('function evaluation')
        pyplot.ylabel('norm(f(x)) + 10**-9')
        pyplot.legend(['line searches', 'gradient approx' ])
                      
        pyplot.show() 
開發者ID:hamish2014,項目名稱:FreeCAD_assembly2,代碼行數:30,代碼來源:solverLib.py

示例14: semilogy

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def semilogy(args, backend=None):
    set_matplotlib_backend(backend=backend)
    import matplotlib.pyplot as plt
    plt.semilogy(*args)
    plt.show() 
開發者ID:qiriro,項目名稱:PPG,代碼行數:7,代碼來源:utils.py

示例15: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogy [as 別名]
def plot(self, filedir=None, file_format='pdf'):
        if filedir is None:
            filedir = self.workdir
        import matplotlib.pyplot as plt
        plt.switch_backend('agg')

        plt.figure(figsize=(8, 6))
        plt.subplots_adjust(left=0.1, bottom=0.08, right=0.95, top=0.95, wspace=None, hspace=None)
        forces = np.array(self.output['forces'])
        maxforce = [np.max(np.apply_along_axis(np.linalg.norm, 1, x)) for x in forces]
        avgforce = [np.mean(np.apply_along_axis(np.linalg.norm, 1, x)) for x in forces]

        if np.max(maxforce) > 0.0 and np.max(avgforce) > 0.0:
            plt.semilogy(maxforce, 'b.-', label='Max force')
            plt.semilogy(avgforce, 'r.-', label='Mean force')
        else:
            plt.plot(maxforce, 'b.-', label='Max force')
            plt.plot(avgforce, 'r.-', label='Mean force')
        plt.xlabel('Ion movement iteration')
        plt.ylabel('Max Force')
        plt.savefig(filedir + os.sep + 'forces.' + file_format)
        plt.clf()

        plt.figure(figsize=(8, 6))
        plt.subplots_adjust(left=0.1, bottom=0.08, right=0.95, top=0.95, wspace=None, hspace=None)
        stress = np.array(self.output['stress'])
        diag_stress = [np.trace(np.abs(x)) for x in stress]
        offdiag_stress = [np.sum(np.abs(np.triu(x, 1).flatten())) for x in stress]
        plt.semilogy(diag_stress, 'b.-', label='diagonal')
        plt.semilogy(offdiag_stress, 'r.-', label='off-diagonal')
        plt.legend()
        plt.xlabel('Ion movement iteration')
        plt.ylabel(r'$\sum |stress|$ (diag, off-diag)')
        plt.savefig(filedir + os.sep + 'stress.' + file_format) 
開發者ID:MaterialsDiscovery,項目名稱:PyChemia,代碼行數:36,代碼來源:relax.py


注:本文中的matplotlib.pyplot.semilogy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。