本文整理匯總了Python中matplotlib.pyplot.semilogx方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.semilogx方法的具體用法?Python pyplot.semilogx怎麽用?Python pyplot.semilogx使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.semilogx方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_mimo
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def test_mimo(self):
# MIMO
B = np.matrix('1,0;0,1')
D = np.matrix('0,0')
sysMIMO = ss(self.A,B,self.C,D)
frqMIMO = sysMIMO.freqresp(self.omega)
tfMIMO = tf(sysMIMO)
#bode(sysMIMO) # - should throw not implemented exception
#bode(tfMIMO) # - should throw not implemented exception
#plt.figure(3)
#plt.semilogx(self.omega,20*np.log10(np.squeeze(frq[0])))
#plt.figure(4)
#bode(sysMIMO,self.omega)
示例2: db_magnitude_distance_by_trt
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def db_magnitude_distance_by_trt(db1, dist_type,
figure_size=(7, 5), filename=None, filetype="png", dpi=300):
"""
Plot magnitude-distance comparison by tectonic region
"""
trts=[]
for i in db1.records:
trts.append(i.event.tectonic_region)
trt_types=list(set(trts))
selector = SMRecordSelector(db1)
plt.figure(figsize=figure_size)
for trt in trt_types:
subdb = selector.select_trt_type(trt, as_db=True)
mag, dists = get_magnitude_distances(subdb, dist_type)
plt.semilogx(dists, mag, "o", mec='k', mew=0.5, label=trt)
plt.xlabel(DISTANCE_LABEL[dist_type], fontsize=14)
plt.ylabel("Magnitude", fontsize=14)
plt.title("Magnitude vs Distance by Tectonic Region", fontsize=18)
plt.legend(loc='lower right', numpoints=1)
plt.grid()
_save_image(filename, filetype, dpi)
plt.show()
示例3: plot_summarize
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_summarize(prefix, trial, title=None):
res = summarize(prefix, trial)
err = res[:, 1:, 0]
num = res[:, 1:, 3]
marker = ('bo', 'r^', 'gs', 'mp', 'c*')
for i in range(err.shape[1]):
plt.semilogx(num[:, i], err[:, i], marker[i], ms=12)
plt.legend(['Proposed', 'inTrees', 'NH', 'BATree', 'DTree2'], numpoints=1)
plt.xlabel('# of Rules', fontsize=20)
plt.ylabel('Test Error', fontsize=20)
if title is None:
title = prefix
plt.title(title, fontsize=24)
plt.show()
if not os.path.exists('./result/fig/'):
os.mkdir('./result/fig/')
plt.savefig('./result/fig/compare_%s.pdf' % (prefix,), format="pdf", bbox_inches="tight")
plt.close()
示例4: sep_2D_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def sep_2D_plot(x, y, x_name, y_name, molecules, semilogx=False, savePic=False):
"""2D plot to compare all the molecules
:param x: data for x-axis
:param y: data for y-axis, y[i,j], where i is for a molecule, j is for a data point corresponding to a x value
:return: if savePic is True, then .png image, otherwise a 'matplotlib.figure.Figure' object
"""
fig = plt.figure()
plt.xlabel(x_name)
plt.ylabel(y_name)
lineList = []
labelList = []
for i in range(len(molecules)):
if semilogx:
line, = plt.semilogx(x, y[i], 'o-')
else:
line, = plt.plot(x, y[i], 'o-')
lineList.append(line)
lineLabel = 'Comp {0}'.format(molecules[i])
labelList.append(lineLabel)
lgd = fig.legend(lineList, labelList, loc='upper center', bbox_to_anchor=(0.5, 1), ncol=len(molecules) / 2)
if savePic:
file_name = y_name.replace(' ', '_')
fig.savefig('{}.png'.format(file_name), bbox_extra_artists=(lgd,), bbox_inches='tight')
return fig
示例5: test_k_coeffs_binned
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def test_k_coeffs_binned(self):
wavelengths = np.exp(np.arange(np.log(0.31e-6), np.log(29e-6), 1./20))
wavelength_bins = np.array([wavelengths[0:-1], wavelengths[1:]]).T
xsec_calc = TransitDepthCalculator(method="xsec")
xsec_calc.change_wavelength_bins(wavelength_bins)
ktab_calc = TransitDepthCalculator(method="ktables")
ktab_calc.change_wavelength_bins(wavelength_bins)
wavelengths, xsec_depths = xsec_calc.compute_depths(R_sun, M_jup, R_jup, 300, logZ=1, CO_ratio=1.5)
wavelengths, ktab_depths = ktab_calc.compute_depths(R_sun, M_jup, R_jup, 300, logZ=1, CO_ratio=1.5)
diffs = np.abs(ktab_depths - xsec_depths)
'''plt.semilogx(wavelengths, xsec_depths)
plt.semilogx(wavelengths, ktab_depths)
plt.figure()
plt.semilogx(wavelengths, 1e6 * diffs)
plt.show()'''
self.assertTrue(np.median(diffs) < 10e-6)
self.assertTrue(np.percentile(diffs, 95) < 20e-6)
self.assertTrue(np.max(diffs) < 30e-6)
示例6: plot_losses
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_losses(loss_vals, loss_names, filename, title, xlabel, ylabel, spacing=0):
"""
Given a list of errors, plot the objectives of the training and show
"""
plt.close('all')
for li, lvals in enumerate(loss_vals):
iterations = range(len(lvals))
# lvals.insert(0, 0)
if spacing == 0:
plt.loglog(iterations, lvals, '-',label=loss_names[li])
# plt.semilogx(iterations, lvals, 'x-')
else:
xvals = [ii*spacing for ii in iterations]
plt.loglog( xvals, lvals, '-',label=loss_names[li])
plt.grid()
plt.legend(loc='upper left')
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.savefig(filename)
plt.close('all')
示例7: plot_series
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_series(series):
plt.figure(1)
# colors = [np.array([1, 0.1, 0.1]), np.array([0.1, 1, 0.1]), np.array([0.1, 0.1, 1])]
colors = ['m', 'g', 'r', 'b', 'y']
for i, s in enumerate(series):
print(s['x'], s['y'], s['std'], s['label'])
small_number = np.ones_like(s['x']) * (s['x'][1]*0.1)
x_axis = np.where(s['x'] == 0, small_number, s['x'])
plt.plot(x_axis, s['y'], color=colors[i], label=s['label'])
plt.fill_between(x_axis, s['y'] - s['std'], s['y'] + s['std'], color=colors[i], alpha=0.2)
plt.semilogx()
plt.xlabel('MI reward bonus')
plt.ylabel('Final intrinsic reward')
plt.title('Final intrinsic reward in pointMDP with 10 good modes')
plt.legend(loc='best')
plt.show()
示例8: db_magnitude_distance
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def db_magnitude_distance(db1, dist_type, figure_size=(7, 5),
figure_title=None,filename=None, filetype="png", dpi=300):
"""
Creates a plot of magnitude verses distance for a strong motion database
"""
plt.figure(figsize=figure_size)
mags, dists = get_magnitude_distances(db1, dist_type)
plt.semilogx(np.array(dists), np.array(mags), "o", mec='k', mew=0.5)
plt.xlabel(DISTANCE_LABEL[dist_type], fontsize=14)
plt.ylabel("Magnitude", fontsize=14)
if figure_title:
plt.title(figure_title, fontsize=18)
_save_image(filename, filetype, dpi)
plt.grid()
plt.show()
示例9: db_magnitude_distance_by_site
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def db_magnitude_distance_by_site(db1, dist_type, classification="NEHRP",
figure_size=(7, 5), filename=None, filetype="png", dpi=300):
"""
Plot magnitude-distance comparison by site NEHRP or Eurocode 8 Site class
"""
if classification == "NEHRP":
site_bounds = NEHRP_BOUNDS
elif classification == "EC8":
site_bounds = EC8_BOUNDS
else:
raise ValueError("Unrecognised Site Classifier!")
selector = SMRecordSelector(db1)
plt.figure(figsize=figure_size)
total_idx = []
for site_class in site_bounds.keys():
site_idx = _site_selection(db1, site_class, classification)
if site_idx:
site_db = selector.select_records(site_idx, as_db=True)
mags, dists = get_magnitude_distances(site_db, dist_type)
plt.plot(np.array(dists), np.array(mags), "o", mec='k',
mew=0.5, label="Site Class %s" % site_class)
total_idx.extend(site_idx)
unc_idx = set(range(db1.number_records())).difference(set(total_idx))
unc_db = selector.select_records(unc_idx, as_db=True)
mag, dists = get_magnitude_distances(site_db, dist_type)
plt.semilogx(np.array(dists), np.array(mags), "o", mfc="None", mec='k',
mew=0.5, label="Unclassified", zorder=0)
plt.xlabel(DISTANCE_LABEL[dist_type], fontsize=14)
plt.ylabel("Magnitude", fontsize=14)
plt.grid()
plt.legend(ncol=2,loc="lower right", numpoints=1)
plt.title("Magnitude vs Distance (by %s Site Class)" % classification,
fontsize=18)
_save_image(filename, filetype, dpi)
plt.show()
示例10: plot_t
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_t(EM, HS, title, i):
plt.figure(title, figsize=(10, 8))
plt.subplot(i)
plt.semilogx(time, EM)
plt.semilogx(time, HS, '--')
###############################################################################
# Impulse HS
示例11: plot_f
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_f(EM, HS, title, i):
plt.figure(title, figsize=(10, 8))
plt.subplot(i)
plt.semilogx(1/time, EM.real)
plt.semilogx(1/time, HS.real, '--')
plt.semilogx(1/time, EM.imag)
plt.semilogx(1/time, HS.imag, '--')
###############################################################################
# Halfspace
示例12: plot_roc_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot_roc_curve(fpr, tpr, name='model', fig=None):
if fig is None:
fig = plt.figure()
plt.semilogx(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01), 'r', linestyle='--', label='Random guess')
plt.semilogx(fpr, tpr, color=(random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)),
label='ROC curve with {}'.format(name))
plt.title('Receiver Operating Characteristic')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='best')
return fig
示例13: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def plot(self, confidence_level: float=None, show: bool=True, file_name: str=None):
"""
Plot the linear plot line.
:confidence_level: the desired confidence level
:show: True if the plot is to be shown
:file_name: Save the plot as "file_name"
"""
if confidence_level:
self._set_confidence_level(confidence_level)
plt.semilogx(self.cdf_x, _ftolnln(self.cdf[0]))
axis = plt.gca()
axis.grid(True, which='both')
formatter = mpl.ticker.FuncFormatter(_weibull_ticks)
axis.yaxis.set_major_formatter(formatter)
yt_F = np.array([0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.99])
yt_lnF = _ftolnln(yt_F)
plt.yticks(yt_lnF)
plt.ylim(yt_lnF[1], yt_lnF[-1])
plt.xlim(self.cdf_x.min(), self.cdf_x.max())
self._plot_annotate()
plt.ylabel('failure rate')
plt.xlabel('cycles')
if file_name:
plt.savefig(file_name)
if show:
plt.show()
示例14: test_isothermal
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def test_isothermal(self):
Ts = 5700
Tp = 1500
p = Profile()
p.set_isothermal(Tp)
calc = EclipseDepthCalculator()
wavelengths, depths, info_dict = calc.compute_depths(p, R_sun, M_jup, R_jup, Ts, full_output=True)
blackbody = np.pi * 2*h*c**2/wavelengths**5/(np.exp(h*c/wavelengths/k_B/Tp) - 1)
rel_diffs = (info_dict["planet_spectrum"] - blackbody)/blackbody
plt.loglog(1e6 * wavelengths, 1e-3 * blackbody, label="Blackbody")
plt.loglog(1e6 * wavelengths, 1e-3 * info_dict["planet_spectrum"], label="PLATON")
plt.xlabel("Wavelength (micron)", fontsize=12)
plt.ylabel("Planet flux (erg/s/cm$^2$/micron)", fontsize=12)
plt.legend()
plt.tight_layout()
plt.figure()
plt.semilogx(1e6 * wavelengths, 100 * rel_diffs)
plt.xlabel("Wavelength (micron)", fontsize=12)
plt.ylabel("Relative difference (%)", fontsize=12)
plt.tight_layout()
plt.show()
# Should be exact, but in practice isn't, due to our discretization
self.assertLess(np.percentile(np.abs(rel_diffs), 50), 0.02)
self.assertLess(np.percentile(np.abs(rel_diffs), 99), 0.05)
self.assertLess(np.max(np.abs(rel_diffs)), 0.1)
blackbody_star = np.pi * 2*h*c**2/wavelengths**5/(np.exp(h*c/wavelengths/k_B/Ts) - 1)
approximate_depths = blackbody / blackbody_star * (R_jup/R_sun)**2
# Not expected to be very accurate because the star is not a blackbody
self.assertLess(np.median(np.abs(approximate_depths - depths)/approximate_depths), 0.2)
示例15: test_ktables_binned
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import semilogx [as 別名]
def test_ktables_binned(self):
wavelengths = np.exp(np.arange(np.log(0.31e-6), np.log(29e-6), 1./20))
wavelengths = np.append(wavelengths[0:20], wavelengths[50:90])
wavelength_bins = np.array([wavelengths[0:-1], wavelengths[1:]]).T
profile = Profile()
profile.set_from_radiative_solution(
5052, 0.75 * R_sun, 0.03142 * AU, 1.129 * M_jup, 1.115 * R_jup,
0.983, -1.77, -0.44, -0.56, 0.23)
xsec_calc = EclipseDepthCalculator(method="xsec")
xsec_calc.change_wavelength_bins(wavelength_bins)
ktab_calc = EclipseDepthCalculator(method="ktables")
ktab_calc.change_wavelength_bins(wavelength_bins)
xsec_wavelengths, xsec_depths = xsec_calc.compute_depths(
profile, 0.75 * R_sun, 1.129 * M_jup, 1.115 * R_jup,
5052)
ktab_wavelengths, ktab_depths = ktab_calc.compute_depths(
profile, 0.75 * R_sun, 1.129 * M_jup, 1.115 * R_jup,
5052)
rel_diffs = np.abs(ktab_depths - xsec_depths)/ ktab_depths
self.assertTrue(np.median(rel_diffs) < 0.03)
self.assertTrue(np.percentile(rel_diffs, 95) < 0.15)
self.assertTrue(np.max(rel_diffs) < 0.2)
'''print(np.median(rel_diffs), np.percentile(rel_diffs, 95), np.max(rel_diffs))
plt.loglog(xsec_wavelengths, xsec_depths)
plt.loglog(ktab_wavelengths, ktab_depths)
plt.figure()
plt.semilogx(ktab_wavelengths, rel_diffs)
plt.show()'''