本文整理匯總了Python中matplotlib.pyplot.sca方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.sca方法的具體用法?Python pyplot.sca怎麽用?Python pyplot.sca使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.sca方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dplot_1ch
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def dplot_1ch(d, func, pgrid=True, ax=None,
figsize=(9, 4.5), fignum=None, nosuptitle=False, **kwargs):
"""Plot wrapper for single-spot measurements. Use `dplot` instead."""
global gui_status
if ax is None:
fig = plt.figure(num=fignum, figsize=figsize)
ax = fig.add_subplot(111)
else:
fig = ax.figure
s = d.name
if 'bg_mean' in d:
s += (' BG=%.1fk' % (d.bg_mean[Ph_sel('all')][0] * 1e-3))
if 'T' in d:
s += (u', T=%dμs' % (d.T[0] * 1e6))
if 'mburst' in d:
s += (', #bu=%d' % d.num_bursts[0])
if not nosuptitle:
ax.set_title(s, fontsize=12)
ax.grid(pgrid)
plt.sca(ax)
gui_status['first_plot_in_figure'] = True
func(d, **kwargs)
return ax
示例2: test_given_colors_levels_and_extends
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def test_given_colors_levels_and_extends():
_, axes = plt.subplots(2, 4)
data = np.arange(12).reshape(3, 4)
colors = ['red', 'yellow', 'pink', 'blue', 'black']
levels = [2, 4, 8, 10]
for i, ax in enumerate(axes.flatten()):
plt.sca(ax)
filled = i % 2 == 0.
extend = ['neither', 'min', 'max', 'both'][i // 2]
if filled:
last_color = -1 if extend in ['min', 'max'] else None
plt.contourf(data, colors=colors[:last_color], levels=levels,
extend=extend)
else:
last_level = -1 if extend == 'both' else None
plt.contour(data, colors=colors, levels=levels[:last_level],
extend=extend)
plt.colorbar()
示例3: plot_sub_joint
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_sub_joint(self, func, subsample, **kwargs):
"""Draw a bivariate plot of `x` and `y`.
Parameters
----------
func : plotting callable
This must take two 1d arrays of data as the first two
positional arguments, and it must plot on the "current" axes.
kwargs : key, value mappings
Keyword argument are passed to the plotting function.
Returns
-------
self : JointGrid instance
Returns `self`.
"""
if subsample > 0 and subsample < len(self.x):
indexes = np.random.choice(range(len(self.x)), subsample,
replace=False)
plot_x = np.array([self.x[i] for i in indexes])
plot_y = np.array([self.y[i] for i in indexes])
plt.sca(self.ax_joint)
func(plot_x, plot_y, **kwargs)
else:
plt.sca(self.ax_joint)
func(self.x, self.y, **kwargs)
return self
示例4: plot_state
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_state(self, ax, x=None, color="b", normalize=True):
""" Plot the current state or a given state vector
Parameters:
-----------
ax: Axes Object
The axes to plot the state on
x: 2x0 array_like[float], optional
A state vector of the dynamics
Returns
-------
ax: Axes Object
The axes with the state plotted
"""
if x is None:
x = self.current_state
if normalize:
x, _ = self.normalize(x)
assert len(
x) == self.n_s, "x needs to have the same number of states as the dynamics"
plt.sca(ax)
ax.plot(x[0], x[1], color=color, marker="o", mew=1.2)
return ax
示例5: plot_figures
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_figures(figures, nrows=1, ncols=1, width_ratios=None):
fig, axeslist = plt.subplots(ncols=ncols, nrows=nrows, gridspec_kw={'width_ratios': width_ratios})
for ind, (title, fig) in enumerate(figures):
axeslist.ravel()[ind].imshow(fig, cmap='gray', interpolation='nearest')
axeslist.ravel()[ind].set_title(title)
if TASK != 'Associative Recall' or ind == 0:
axeslist.ravel()[ind].set_xlabel('Time ------->')
if TASK == 'Associative Recall':
plt.sca(axeslist[1])
plt.xticks([0, 1, 2])
plt.sca(axeslist[2])
plt.xticks([0, 1, 2])
if TASK == 'Copy':
plt.sca(axeslist[1])
plt.yticks([])
plt.tight_layout()
示例6: plot_contours_in_slice
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_contours_in_slice(self, slice_seg, target_axis):
"""Plots contour around the data in slice (after binarization)"""
plt.sca(target_axis)
contour_handles = list()
for index, label in enumerate(self.unique_labels_display):
binary_slice_seg = slice_seg == index
if not binary_slice_seg.any():
continue
ctr_h = plt.contour(binary_slice_seg,
levels=[cfg.contour_level, ],
colors=(self.color_for_label[index],),
linewidths=cfg.contour_line_width,
alpha=self.alpha_seg,
zorder=cfg.seg_zorder_freesurfer)
contour_handles.append(ctr_h)
return contour_handles
示例7: matplotformat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def matplotformat(self, ax, plot_y, plot_name, x_max):
plt.sca(ax)
plot_x = [i * 5 for i in range(len(plot_y))]
plt.xticks(np.linspace(0, x_max, (x_max // 50) + 1, dtype=np.int32))
plt.xlabel('Epochs', fontsize=16)
plt.ylabel('NLL by oracle', fontsize=16)
plt.title(plot_name)
plt.plot(plot_x, plot_y)
開發者ID:EternalFeather,項目名稱:Generative-adversarial-Nets-in-NLP,代碼行數:10,代碼來源:adversarial_real_corpus.py
示例8: matplotformat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def matplotformat(self, ax, plot_y, plot_name, x_max):
plt.sca(ax)
plot_x = [i * 5 for i in range(len(plot_y))]
plt.xticks(np.linspace(0, x_max, (x_max // 100) + 1, dtype=np.int32))
plt.xlabel('Epochs', fontsize=16)
plt.ylabel('NLL by oracle', fontsize=16)
plt.title(plot_name)
plt.plot(plot_x, plot_y)
示例9: visualize_predictions
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def visualize_predictions(prediction_seqs, label_seqs, num_classes,
fig_width=6.5, fig_height_per_seq=0.5):
""" Visualize predictions vs. ground truth.
Args:
prediction_seqs: A list of int NumPy arrays, each with shape
`[duration, 1]`.
label_seqs: A list of int NumPy arrays, each with shape `[duration, 1]`.
num_classes: An integer.
fig_width: A float. Figure width (inches).
fig_height_per_seq: A float. Figure height per sequence (inches).
Returns:
A tuple of the created figure, axes.
"""
num_seqs = len(label_seqs)
max_seq_length = max([seq.shape[0] for seq in label_seqs])
figsize = (fig_width, num_seqs*fig_height_per_seq)
fig, axes = plt.subplots(nrows=num_seqs, ncols=1,
sharex=True, figsize=figsize)
for pred_seq, label_seq, ax in zip(prediction_seqs, label_seqs, axes):
plt.sca(ax)
plot_label_seq(label_seq, num_classes, 1)
plot_label_seq(pred_seq, num_classes, -1)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.xlim(0, max_seq_length)
plt.ylim(-2.75, 2.75)
plt.tight_layout()
return fig, axes
示例10: implot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def implot(im1, im2, im3, im4, im5, im6, im7, im8):
m = 4
n = 2
ims = [im1, im2, im3, im4, im5, im6, im7, im8]
for i in range(m*n):
ax = plt.subplot(m, n, i+1)
plt.sca(ax)
plt.imshow(ims[i])
示例11: plotChart
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plotChart(self, costList, misRateList, saveFigPath):
'''
繪製錯分率和損失函數值隨 epoch 變化的曲線。
:param costList: 訓練過程中每個epoch的損失函數列表
:param misRateList: 訓練過程中每個epoch的錯分率列表
:return:
'''
# 導入繪圖庫
import matplotlib.pyplot as plt
# 新建畫布
plt.figure('Perceptron Cost and Mis-classification Rate',figsize=(8, 9))
# 設定兩個子圖和位置關係
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
# 選擇子圖1並繪製損失函數值折線圖及相關坐標軸
plt.sca(ax1)
plt.plot(xrange(1, len(costList)+1), costList, '--b*')
plt.xlabel('Epoch No.')
plt.ylabel('Cost')
plt.title('Plot of Cost Function')
plt.grid()
ax1.legend(u"Cost", loc='best')
# 選擇子圖2並繪製錯分率折線圖及相關坐標軸
plt.sca(ax2)
plt.plot(xrange(1, len(misRateList)+1), misRateList, '-r*')
plt.xlabel('Epoch No.')
plt.ylabel('Mis-classification Rate')
plt.title('Plot of Mis-classification Rate')
plt.grid()
ax2.legend(u'Mis-classification Rate', loc='best')
# 顯示圖像並打印和保存
# 需要先保存再繪圖否則相當於新建了一張新空白圖像然後保存
plt.savefig(saveFigPath)
plt.show()
################################### PART3 TEST ########################################
# 例子
示例12: plotChart
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plotChart(self, costList, misRateList, saveFigPath):
'''
繪製錯分率和損失函數值隨 epoch 變化的曲線。
:param costList: 訓練過程中每個epoch的損失函數列表
:param misRateList: 訓練過程中每個epoch的錯分率列表
:return:
'''
# 導入繪圖庫
import matplotlib.pyplot as plt
# 新建畫布
plt.figure('Perceptron Cost and Mis-classification Rate', figsize=(8, 9))
# 設定兩個子圖和位置關係
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
# 選擇子圖1並繪製損失函數值折線圖及相關坐標軸
plt.sca(ax1)
plt.plot(xrange(1, len(costList) + 1), costList, '--b*')
plt.xlabel('Epoch No.')
plt.ylabel('Cost')
plt.title('Plot of Cost Function')
plt.grid()
ax1.legend(u"Cost", loc='best')
# 選擇子圖2並繪製錯分率折線圖及相關坐標軸
plt.sca(ax2)
plt.plot(xrange(1, len(misRateList) + 1), misRateList, '-r*')
plt.xlabel('Epoch No.')
plt.ylabel('Mis-classification Rate')
plt.title('Plot of Mis-classification Rate')
plt.grid()
ax2.legend(u'Mis-classification Rate', loc='best')
# 顯示圖像並打印和保存
# 需要先保存再繪圖否則相當於新建了一張新空白圖像然後保存
plt.savefig(saveFigPath)
plt.show()
################################### PART3 TEST ########################################
# 例子
示例13: plot_ellipsoid_2D
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_ellipsoid_2D(p, q, ax, n_points=100, color="r"):
""" Plot an ellipsoid in 2D
TODO: Untested!
Parameters
----------
p: 3x1 array[float]
Center of the ellipsoid
q: 3x3 array[float]
Shape matrix of the ellipsoid
ax: matplotlib.Axes object
Ax on which to plot the ellipsoid
Returns
-------
ax: matplotlib.Axes object
The Ax containing the ellipsoid
"""
plt.sca(ax)
r = nLa.cholesky(q).T; # checks spd inside the function
t = np.linspace(0, 2 * np.pi, n_points);
z = [np.cos(t), np.sin(t)];
ellipse = np.dot(r, z) + p;
handle, = ax.plot(ellipse[0, :], ellipse[1, :], color)
return ax, handle
示例14: plot_ellipsoid_trajectory
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_ellipsoid_trajectory(self, p, q, vis_safety_bounds=True, ax=None,
color="r"):
""" Plot the reachability ellipsoids given in observation space
TODO: Need more principled way to transform ellipsoid to internal states
Parameters
----------
p: n x n_s array[float]
The ellipsoid centers of the trajectory
q: n x n_s x n_s ndarray[float]
The shape matrices of the trajectory
vis_safety_bounds: bool, optional
Visualize the safety bounds of the system
"""
new_ax = False
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
new_ax = True
plt.sca(ax)
n, n_s = np.shape(p)
handles = [None] * n
for i in range(n):
p_i = cas_reshape(p[i, :], (n_s, 1)) + self.p_origin.reshape((n_s, 1))
q_i = cas_reshape(q[i, :], (self.n_s, self.n_s))
ax, handles[i] = plot_ellipsoid_2D(p_i, q_i, ax, color=color)
# ax = plot_ellipsoid_2D(p_i,q_i,ax,color = color)
if vis_safety_bounds:
ax = self.plot_safety_bounds(ax)
if new_ax:
plt.show()
return ax, handles
示例15: plot_ellipsoid_2D
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import sca [as 別名]
def plot_ellipsoid_2D(p, q, ax, n_points = 100, color = "r"):
""" Plot an ellipsoid in 2D
TODO: Untested!
Parameters
----------
p: 3x1 array[float]
Center of the ellipsoid
q: 3x3 array[float]
Shape matrix of the ellipsoid
ax: matplotlib.Axes object
Ax on which to plot the ellipsoid
Returns
-------
ax: matplotlib.Axes object
The Ax containing the ellipsoid
"""
plt.sca(ax)
r = nLa.cholesky(q).T; #checks spd inside the function
t = np.linspace(0, 2*np.pi, n_points);
z = [np.cos(t), np.sin(t)];
ellipse = np.dot(r,z) + p;
handle, = ax.plot(ellipse[0,:], ellipse[1,:],color)
return ax, handle