本文整理匯總了Python中matplotlib.pyplot.savefig方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.savefig方法的具體用法?Python pyplot.savefig怎麽用?Python pyplot.savefig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.savefig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_wh_methods
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi=200)
示例2: plot_evolution_results
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp)
# Plot hyperparameter evolution results in evolve.txt
x = np.loadtxt('evolve.txt', ndmin=2)
f = fitness(x)
weights = (f - f.min()) ** 2 # for weighted results
fig = plt.figure(figsize=(12, 10))
matplotlib.rc('font', **{'size': 8})
for i, (k, v) in enumerate(hyp.items()):
y = x[:, i + 5]
# mu = (y * weights).sum() / weights.sum() # best weighted result
mu = y[f.argmax()] # best single result
plt.subplot(4, 5, i + 1)
plt.plot(mu, f.max(), 'o', markersize=10)
plt.plot(y, f, '.')
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
print('%15s: %.3g' % (k, mu))
fig.tight_layout()
plt.savefig('evolve.png', dpi=200)
示例3: plot_alignment
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_alignment(alignment, gs, dir=hp.logdir):
"""Plots the alignment.
Args:
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
gs: (int) global step.
dir: Output path.
"""
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('{} Steps'.format(gs))
plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
plt.close(fig)
示例4: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot(PDF, figName, imgpath, show=False, save=True):
# plot
output = PDF.get_constraint_value()
plt.plot(PDF.experimentalDistances,PDF.experimentalPDF, 'ro', label="experimental", markersize=7.5, markevery=1 )
plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth=3.0, markevery=25, label="total" )
styleIndex = 0
for key in output:
val = output[key]
if key in ("pdf_total", "pdf"):
continue
elif "inter" in key:
plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery=5, label=key.split('rdf_inter_')[1] )
styleIndex+=1
plt.legend(frameon=False, ncol=1)
# set labels
plt.title("$\\chi^{2}=%.6f$"%PDF.squaredDeviations, size=20)
plt.xlabel("$r (\AA)$", size=20)
plt.ylabel("$g(r)$", size=20)
# show plot
if save: plt.savefig(figName)
if show: plt.show()
plt.close()
示例5: plot_images
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
# Plots training images overlaid with targets
imgs = imgs.cpu().numpy()
targets = targets.cpu().numpy()
# targets = targets[targets[:, 1] == 21] # plot only one class
fig = plt.figure(figsize=(10, 10))
bs, _, h, w = imgs.shape # batch size, _, height, width
bs = min(bs, 16) # limit plot to 16 images
ns = np.ceil(bs ** 0.5) # number of subplots
for i in range(bs):
boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
boxes[[0, 2]] *= w
boxes[[1, 3]] *= h
plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
plt.axis('off')
if paths is not None:
s = Path(paths[i]).name
plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters
fig.tight_layout()
fig.savefig(fname, dpi=200)
plt.close()
示例6: plot_test_txt
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_test_txt(): # from utils.utils import *; plot_test()
# Plot test.txt histograms
x = np.loadtxt('test.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect('equal')
fig.tight_layout()
plt.savefig('hist2d.jpg', dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
fig.tight_layout()
plt.savefig('hist1d.jpg', dpi=200)
示例7: plot_results_overlay
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
# Plot training results files 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1'] # legends
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
ax = ax.ravel()
for i in range(5):
for j in [i, i + 5]:
y = results[j, x]
if i in [0, 1, 2]:
y[y == 0] = np.nan # dont show zero loss values
ax[i].plot(x, y, marker='.', label=s[j])
ax[i].set_title(t[i])
ax[i].legend()
ax[i].set_ylabel(f) if i == 0 else None # add filename
fig.tight_layout()
fig.savefig(f.replace('.txt', '.png'), dpi=200)
示例8: plot_13
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_13(data):
r1, r2, r3, r4 = data
plt.figure()
add_plot(r3, 'MeanReward100Episodes');
add_plot(r3, 'BestMeanReward', 'gamma = 0.9');
add_plot(r2, 'MeanReward100Episodes');
add_plot(r2, 'BestMeanReward', 'gamma = 0.99');
add_plot(r4, 'MeanReward100Episodes');
add_plot(r4, 'BestMeanReward', 'gamma = 0.999');
plt.legend();
plt.xlabel('Time step');
plt.ylabel('Reward');
plt.savefig(
os.path.join('results', 'p13.png'),
bbox_inches='tight',
transparent=True,
pad_inches=0.1
)
示例9: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('logdir', type=str)
parser.add_argument('--save_name', type=str, default='results')
args = parser.parse_args()
if not os.path.exists('results'):
os.makedirs('results')
plot_3(get_datasets(args.logdir))
plt.savefig(
os.path.join('results', args.save_name + '.png'),
bbox_inches='tight',
transparent=True,
pad_inches=0.1
)
示例10: plot_some_results
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_some_results(pred_fn, test_generator, n_images=10):
fig_ctr = 0
for data, seg in test_generator:
res = pred_fn(data)
for d, s, r in zip(data, seg, res):
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.imshow(d.transpose(1,2,0))
plt.title("input patch")
plt.subplot(1, 3, 2)
plt.imshow(s[0])
plt.title("ground truth")
plt.subplot(1, 3, 3)
plt.imshow(r)
plt.title("segmentation")
plt.savefig("road_segmentation_result_%03.0f.png"%fig_ctr)
plt.close()
fig_ctr += 1
if fig_ctr > n_images:
break
示例11: plot_tsne
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_tsne(self, save_eps=False):
''' Plot TSNE figure. Set save_eps=True if you want to save a .eps file.
'''
tsne = TSNE(n_components=2, init='pca', random_state=0)
features = tsne.fit_transform(self.features)
x_min, x_max = np.min(features, 0), np.max(features, 0)
data = (features - x_min) / (x_max - x_min)
del features
for i in range(data.shape[0]):
plt.text(data[i, 0], data[i, 1], str(self.labels[i]),
color=plt.cm.Set1(self.labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
plt.xticks([])
plt.yticks([])
plt.title('T-SNE')
if save_eps:
plt.savefig('tsne.eps', dpi=600, format='eps')
plt.show()
示例12: plot_result_data
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_result_data(acc_total, acc_val_total, loss_total, losss_val_total, cfg_path, epoch):
import matplotlib.pyplot as plt
y = range(epoch)
plt.plot(y,acc_total,linestyle="-", linewidth=1,label='acc_train')
plt.plot(y,acc_val_total,linestyle="-", linewidth=1,label='acc_val')
plt.legend(('acc_train', 'acc_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Acc on dataset")
plt.savefig('{}/acc.png'.format(cfg_path))
plt.cla()
plt.plot(y,loss_total,linestyle="-", linewidth=1,label='loss_train')
plt.plot(y,losss_val_total,linestyle="-", linewidth=1,label='loss_val')
plt.legend(('loss_train', 'loss_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Loss on dataset")
plt.savefig('{}/loss.png'.format(cfg_path))
示例13: classify
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def classify(self, features, show=False):
recs, _ = features.shape
result_shape = (features.shape[0], len(self.root))
scores = np.zeros(result_shape)
print scores.shape
R = Record(np.arange(recs, dtype=int), features)
for i, T in enumerate(self.root):
for idxs, result in classify(T, R):
for idx in idxs.indexes():
scores[idx, i] = float(result[0]) / sum(result.values())
if show:
plt.cla()
plt.clf()
plt.close()
plt.imshow(scores, cmap=plt.cm.gray)
plt.title('Scores matrix')
plt.savefig(r"../scratch/tree_scores.png", bbox_inches='tight')
return scores
示例14: plot_alignment
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plot_alignment(alignment, gs, dir=hp.logdir):
"""Plots the alignment.
Args:
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
gs: (int) global step.
dir: Output path.
"""
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('{} Steps'.format(gs))
plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
示例15: plotnoduledist
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import savefig [as 別名]
def plotnoduledist(annopath):
import pandas as pd
df = pd.read_csv(annopath+'train/annotations.csv')
diameter = df['diameter_mm'].reshape((-1,1))
df = pd.read_csv(annopath+'val/annotations.csv')
diameter = np.vstack([df['diameter_mm'].reshape((-1,1)), diameter])
df = pd.read_csv(annopath+'test/annotations.csv')
diameter = np.vstack([df['diameter_mm'].reshape((-1,1)), diameter])
fig = plt.figure()
plt.hist(diameter, normed=True, bins=50)
plt.ylabel('probability')
plt.xlabel('Diameters')
plt.title('Nodule Diameters Histogram')
plt.savefig('nodulediamhist.png')