當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.pcolormesh方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.pcolormesh方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.pcolormesh方法的具體用法?Python pyplot.pcolormesh怎麽用?Python pyplot.pcolormesh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.pcolormesh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_classification_areas

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def show_classification_areas(X, Y, lr):
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
    Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(30, 25))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
    plt.xlabel('X')
    plt.ylabel('Y')

    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())

    plt.show() 
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py

示例2: test_pcolormesh

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh():
    n = 12
    x = np.linspace(-1.5, 1.5, n)
    y = np.linspace(-1.5, 1.5, n*2)
    X, Y = np.meshgrid(x, y)
    Qx = np.cos(Y) - np.cos(X)
    Qz = np.sin(Y) + np.sin(X)
    Qx = (Qx + 1.1)
    Z = np.sqrt(X**2 + Y**2)/5
    Z = (Z - Z.min()) / (Z.max() - Z.min())

    # The color array can include masked values:
    Zm = ma.masked_where(np.fabs(Qz) < 0.5*np.amax(Qz), Z)

    fig = plt.figure()
    ax = fig.add_subplot(131)
    ax.pcolormesh(Qx, Qz, Z, lw=0.5, edgecolors='k')

    ax = fig.add_subplot(132)
    ax.pcolormesh(Qx, Qz, Z, lw=2, edgecolors=['b', 'w'])

    ax = fig.add_subplot(133)
    ax.pcolormesh(Qx, Qz, Z, shading="gouraud") 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:25,代碼來源:test_axes.py

示例3: plt_potential_func

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plt_potential_func(potential, ax, npts=100, title="$p(x)$"):
    """
    Args:
        potential: computes U(z_k) given z_k
    """
    xside = np.linspace(LOW, HIGH, npts)
    yside = np.linspace(LOW, HIGH, npts)
    xx, yy = np.meshgrid(xside, yside)
    z = np.hstack([xx.reshape(-1, 1), yy.reshape(-1, 1)])

    z = torch.Tensor(z)
    u = potential(z).cpu().numpy()
    p = np.exp(-u).reshape(npts, npts)

    plt.pcolormesh(xx, yy, p)
    ax.invert_yaxis()
    ax.get_xaxis().set_ticks([])
    ax.get_yaxis().set_ticks([])
    ax.set_title(title) 
開發者ID:rtqichen,項目名稱:residual-flows,代碼行數:21,代碼來源:visualize_flow.py

示例4: show_attention_map

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def show_attention_map(src_words, pred_words, attention, pointer_ratio=None):
  fig, ax = plt.subplots(figsize=(16, 4))
  im = plt.pcolormesh(np.flipud(attention), cmap="GnBu")
  # set ticks and labels
  ax.set_xticks(np.arange(len(src_words)) + 0.5)
  ax.set_xticklabels(src_words, fontsize=14)
  ax.set_yticks(np.arange(len(pred_words)) + 0.5)
  ax.set_yticklabels(reversed(pred_words), fontsize=14)
  if pointer_ratio is not None:
    ax1 = ax.twinx()
    ax1.set_yticks(np.concatenate([np.arange(0.5, len(pred_words)), [len(pred_words)]]))
    ax1.set_yticklabels('%.3f' % v for v in np.flipud(pointer_ratio))
    ax1.set_ylabel('Copy probability', rotation=-90, va="bottom")
  # let the horizontal axes labelling appear on top
  ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False)
  # rotate the tick labels and set their alignment
  plt.setp(ax.get_xticklabels(), rotation=-45, ha="right", rotation_mode="anchor") 
開發者ID:ymfa,項目名稱:seq2seq-summarizer,代碼行數:19,代碼來源:utils.py

示例5: test_pcolormesh_datetime_axis

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh_datetime_axis():
    fig = plt.figure()
    fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
    base = datetime.datetime(2013, 1, 1)
    x = np.array([base + datetime.timedelta(days=d) for d in range(21)])
    y = np.arange(21)
    z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
    z = z1 * z2
    plt.subplot(221)
    plt.pcolormesh(x[:-1], y[:-1], z)
    plt.subplot(222)
    plt.pcolormesh(x, y, z)
    x = np.repeat(x[np.newaxis], 21, axis=0)
    y = np.repeat(y[:, np.newaxis], 21, axis=1)
    plt.subplot(223)
    plt.pcolormesh(x[:-1, :-1], y[:-1, :-1], z)
    plt.subplot(224)
    plt.pcolormesh(x, y, z)
    for ax in fig.get_axes():
        for label in ax.get_xticklabels():
            label.set_ha('right')
            label.set_rotation(30) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:24,代碼來源:test_axes.py

示例6: Pcolor

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.
    
    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to plt.pcolor and/or plt.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = plt.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        plt.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = plt.contour(X, Y, Z, **options)
        plt.clabel(cs, inline=1, fontsize=10) 
開發者ID:Notabela,項目名稱:Lie_to_me,代碼行數:27,代碼來源:thinkplot.py

示例7: test_pcolormesh

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh():
    n = 12
    x = np.linspace(-1.5, 1.5, n)
    y = np.linspace(-1.5, 1.5, n*2)
    X, Y = np.meshgrid(x, y)
    Qx = np.cos(Y) - np.cos(X)
    Qz = np.sin(Y) + np.sin(X)
    Qx = (Qx + 1.1)
    Z = np.hypot(X, Y) / 5
    Z = (Z - Z.min()) / Z.ptp()

    # The color array can include masked values:
    Zm = ma.masked_where(np.abs(Qz) < 0.5 * np.max(Qz), Z)

    fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
    ax1.pcolormesh(Qx, Qz, Z, lw=0.5, edgecolors='k')
    ax2.pcolormesh(Qx, Qz, Z, lw=2, edgecolors=['b', 'w'])
    ax3.pcolormesh(Qx, Qz, Z, shading="gouraud") 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:20,代碼來源:test_axes.py

示例8: test_pcolorargs

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolorargs():
    n = 12
    x = np.linspace(-1.5, 1.5, n)
    y = np.linspace(-1.5, 1.5, n*2)
    X, Y = np.meshgrid(x, y)
    Z = np.sqrt(X**2 + Y**2)/5

    _, ax = plt.subplots()
    with pytest.raises(TypeError):
        ax.pcolormesh(y, x, Z)
    with pytest.raises(TypeError):
        ax.pcolormesh(X, Y, Z.T)
    with pytest.raises(TypeError):
        ax.pcolormesh(x, y, Z[:-1, :-1], shading="gouraud")
    with pytest.raises(TypeError):
        ax.pcolormesh(X, Y, Z[:-1, :-1], shading="gouraud")
    x[0] = np.NaN
    with pytest.raises(ValueError):
        ax.pcolormesh(x, y, Z[:-1, :-1])
    with np.errstate(invalid='ignore'):
        x = np.ma.array(x, mask=(x < 0))
    with pytest.raises(ValueError):
        ax.pcolormesh(x, y, Z[:-1, :-1]) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:25,代碼來源:test_axes.py

示例9: test_visualize

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_visualize(self):
        seg = audiosegment.from_file("furelise.wav")

        duration_s = 2.5
        hist_bins, times, amplitudes = seg.spectrogram(start_s=0, duration_s=duration_s, window_length_s=0.03, overlap=0.25)
        amplitudes = 10 * np.log10(amplitudes + 1e-9)

        plt.subplot(121)
        plt.pcolormesh(times, hist_bins, amplitudes)
        plt.xlabel("Time in Seconds")
        plt.ylabel("Frequency in Hz")

        hist_bins, times, amplitudes = seg.spectrogram(start_s=duration_s, duration_s=duration_s, window_length_s=0.03, overlap=0.25)
        times += duration_s
        amplitudes = 10 * np.log10(amplitudes + 1e-9)

        plt.subplot(122)
        plt.pcolormesh(times,hist_bins,amplitudes)
        plt.show() 
開發者ID:MaxStrange,項目名稱:AudioSegment,代碼行數:21,代碼來源:spectrogram.py

示例10: plot_sound_class_by_decending_accuracy

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_sound_class_by_decending_accuracy(experiment_path):
    config_parser = configparser.ConfigParser()
    config_parser.read(os.path.join(experiment_path, "conf.ini"))
    model_name = config_parser['MODEL']['ModelName']
    y_trues, y_scores = load_predictions(experiment_path)

    y_true = [np.argmax(y_t) for y_t in y_trues]
    y_pred = [np.argmax(y_s) for y_s in y_scores]

    confusion_matrix = metrics.confusion_matrix(y_true, y_pred)

    accuracies = []
    (nb_rows, nb_cols) = confusion_matrix.shape
    for i in range(nb_rows):
        accuracy = confusion_matrix[i][i] / np.sum(confusion_matrix[i,:])
        accuracies.append(accuracy)

    fig = plt.figure()
    plt.title("Sound Class ranked by Accuracy ({})".format(model_name))
    plt.plot(sorted(accuracies, reverse=True))
    plt.ylabel("Accuracy")
    plt.xlabel("Rank")
    # plt.pcolormesh(confusion_matrix, cmap=cmap)
    fig.savefig(os.path.join(experiment_path, "descending_accuracy.png")) 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:26,代碼來源:vis.py

示例11: plot_colormap_upgrade

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_colormap_upgrade(data, figSizeIn, xlabel, ylabel, cbarlabel, cmapIn, ytickRange, ytickTag, xtickRange=None, xtickTag=None, title=None, xmin=None, xmax=None, xgran=None, ymin=None, ymax=None, ygran=None):
    if xmin != None:
        y, x = np.mgrid[slice(ymin, ymax + ygran, ygran),
                slice(xmin, xmax + xgran, xgran)]
        fig = plt.figure(figsize = figSizeIn)
#       plt.pcolor(data, cmap=cmapIn)
        plt.pcolormesh(x, y, data, cmap=cmapIn)
        plt.grid(which='major',axis='both')
        plt.axis([x.min(), x.max(), y.min(), y.max()])
    else:
        plt.pcolor(data, cmap=cmapIn)

    cbar = plt.colorbar()
    cbar.set_label(cbarlabel, labelpad=-0.1)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
#   if xtickTag:
#       plt.xticks(xtickRange, xtickTag, fontsize=10)
#
#   plt.yticks(ytickRange, ytickTag, fontsize=10)
    plt.tight_layout()
    if title:
        plt.title(title)
    plt.show()
    return fig 
開發者ID:plastering,項目名稱:plastering,代碼行數:27,代碼來源:plotter.py

示例12: plot_classification

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_classification(classification_gaussiannb, a , b):

	a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
	b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0

	step_size = 0.01

	a_values, b_values = np.meshgrid(np.arange(a_min, a_max, step_size), np.arange(b_min, b_max, step_size))

	mesh_output1 = classification_gaussiannb.predict(np.c_[a_values.ravel(), b_values.ravel()])

	mesh_output2 = mesh_output1.reshape(a_values.shape)

	plt.figure()

	plt.pcolormesh(a_values, b_values, mesh_output2, cmap=plt.cm.gray)

	plt.scatter(a[:, 0], a[:, 1], c=b , s=80, edgecolors='black', linewidth=1,cmap=plt.cm.Paired)
	# specify the boundaries of the figure
	plt.xlim(a_values.min(), a_values.max())
	plt.ylim(b_values.min(), b_values.max())
	# specify the ticks on the X and Y axes
	plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1), 1.0)))
	plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1), 1.0)))
	plt.show() 
開發者ID:PacktPublishing,項目名稱:Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition,代碼行數:27,代碼來源:Building_Naive_Bayes_classifier.py

示例13: plot_classification

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_classification(classification, a , b):

	a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
	b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0

	step_size = 0.01

	a_values, b_values = np.meshgrid(np.arange(a_min, a_max, step_size), np.arange(b_min, b_max, step_size))

	mesh_output1 = classification.predict(np.c_[a_values.ravel(), b_values.ravel()])

	mesh_output2 = mesh_output1.reshape(a_values.shape)

	plt.figure()

	plt.pcolormesh(a_values, b_values, mesh_output2, cmap=plt.cm.gray)

	plt.scatter(a[:, 0], a[:, 1], c=b , s=80, edgecolors='black', linewidth=1,cmap=plt.cm.Paired)
	# specify the boundaries of the figure
	plt.xlim(a_values.min(), a_values.max())
	plt.ylim(b_values.min(), b_values.max())
	# specify the ticks on the X and Y axes
	plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1), 1.0)))
	plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1), 1.0)))
	plt.show() 
開發者ID:PacktPublishing,項目名稱:Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition,代碼行數:27,代碼來源:logistic_regression.py

示例14: plt_flow

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plt_flow(transform, ax, npts=300, title="$q(x)$", device="cpu"):
    """
    Args:
        transform: computes z_k and log(q_k) given z_0
    """
    side = np.linspace(LOW, HIGH, npts)
    xx, yy = np.meshgrid(side, side)
    x = np.hstack([xx.reshape(-1, 1), yy.reshape(-1, 1)])
    with torch.no_grad():
        logqx, z = transform(torch.tensor(x).float().to(device))

    #xx = z[:, 0].cpu().numpy().reshape(npts, npts)
    #yy = z[:, 1].cpu().numpy().reshape(npts, npts)
    qz = np.exp(logqx.cpu().numpy()).reshape(npts, npts)

    plt.pcolormesh(xx, yy, qz)
    ax.set_xlim(LOW, HIGH)
    ax.set_ylim(LOW, HIGH)
    cmap = matplotlib.cm.get_cmap(None)
    ax.set_facecolor(cmap(0.))
    ax.invert_yaxis()
    ax.get_xaxis().set_ticks([])
    ax.get_yaxis().set_ticks([])
    ax.set_title(title) 
開發者ID:AWehenkel,項目名稱:UMNN,代碼行數:26,代碼來源:visualize_flow.py

示例15: plot_distance_map

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_distance_map(self, colormap='Oranges', filename=None):
        """ Plot the distance map after training.

        :param colormap: {str} colormap to use, select from matplolib sequential colormaps
        :param filename: {str} optional, if given, the plot is saved to this location
        :return: plot shown or saved if a filename is given
        """
        if np.mean(self.distmap) == 0.:
            self.distance_map()
        fig, ax = plt.subplots(figsize=self.shape)
        plt.pcolormesh(self.distmap, cmap=colormap, edgecolors=None)
        plt.colorbar()
        plt.xticks(np.arange(.5, self.x + .5), range(self.x))
        plt.yticks(np.arange(.5, self.y + .5), range(self.y))
        plt.title("Distance Map", fontweight='bold', fontsize=28)
        ax.set_aspect('equal')
        if filename:
            plt.savefig(filename)
            plt.close()
            print("Distance map plot done!")
        else:
            plt.show() 
開發者ID:alexarnimueller,項目名稱:som,代碼行數:24,代碼來源:som.py


注:本文中的matplotlib.pyplot.pcolormesh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。