本文整理匯總了Python中matplotlib.pyplot.pcolormesh方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.pcolormesh方法的具體用法?Python pyplot.pcolormesh怎麽用?Python pyplot.pcolormesh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.pcolormesh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: show_classification_areas
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def show_classification_areas(X, Y, lr):
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(30, 25))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Pastel1)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.abs(Y - 1), edgecolors='k', cmap=plt.cm.coolwarm)
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
開發者ID:PacktPublishing,項目名稱:Fundamentals-of-Machine-Learning-with-scikit-learn,代碼行數:23,代碼來源:1logistic_regression.py
示例2: test_pcolormesh
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh():
n = 12
x = np.linspace(-1.5, 1.5, n)
y = np.linspace(-1.5, 1.5, n*2)
X, Y = np.meshgrid(x, y)
Qx = np.cos(Y) - np.cos(X)
Qz = np.sin(Y) + np.sin(X)
Qx = (Qx + 1.1)
Z = np.sqrt(X**2 + Y**2)/5
Z = (Z - Z.min()) / (Z.max() - Z.min())
# The color array can include masked values:
Zm = ma.masked_where(np.fabs(Qz) < 0.5*np.amax(Qz), Z)
fig = plt.figure()
ax = fig.add_subplot(131)
ax.pcolormesh(Qx, Qz, Z, lw=0.5, edgecolors='k')
ax = fig.add_subplot(132)
ax.pcolormesh(Qx, Qz, Z, lw=2, edgecolors=['b', 'w'])
ax = fig.add_subplot(133)
ax.pcolormesh(Qx, Qz, Z, shading="gouraud")
示例3: plt_potential_func
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plt_potential_func(potential, ax, npts=100, title="$p(x)$"):
"""
Args:
potential: computes U(z_k) given z_k
"""
xside = np.linspace(LOW, HIGH, npts)
yside = np.linspace(LOW, HIGH, npts)
xx, yy = np.meshgrid(xside, yside)
z = np.hstack([xx.reshape(-1, 1), yy.reshape(-1, 1)])
z = torch.Tensor(z)
u = potential(z).cpu().numpy()
p = np.exp(-u).reshape(npts, npts)
plt.pcolormesh(xx, yy, p)
ax.invert_yaxis()
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
ax.set_title(title)
示例4: show_attention_map
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def show_attention_map(src_words, pred_words, attention, pointer_ratio=None):
fig, ax = plt.subplots(figsize=(16, 4))
im = plt.pcolormesh(np.flipud(attention), cmap="GnBu")
# set ticks and labels
ax.set_xticks(np.arange(len(src_words)) + 0.5)
ax.set_xticklabels(src_words, fontsize=14)
ax.set_yticks(np.arange(len(pred_words)) + 0.5)
ax.set_yticklabels(reversed(pred_words), fontsize=14)
if pointer_ratio is not None:
ax1 = ax.twinx()
ax1.set_yticks(np.concatenate([np.arange(0.5, len(pred_words)), [len(pred_words)]]))
ax1.set_yticklabels('%.3f' % v for v in np.flipud(pointer_ratio))
ax1.set_ylabel('Copy probability', rotation=-90, va="bottom")
# let the horizontal axes labelling appear on top
ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False)
# rotate the tick labels and set their alignment
plt.setp(ax.get_xticklabels(), rotation=-45, ha="right", rotation_mode="anchor")
示例5: test_pcolormesh_datetime_axis
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh_datetime_axis():
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
base = datetime.datetime(2013, 1, 1)
x = np.array([base + datetime.timedelta(days=d) for d in range(21)])
y = np.arange(21)
z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
z = z1 * z2
plt.subplot(221)
plt.pcolormesh(x[:-1], y[:-1], z)
plt.subplot(222)
plt.pcolormesh(x, y, z)
x = np.repeat(x[np.newaxis], 21, axis=0)
y = np.repeat(y[:, np.newaxis], 21, axis=1)
plt.subplot(223)
plt.pcolormesh(x[:-1, :-1], y[:-1, :-1], z)
plt.subplot(224)
plt.pcolormesh(x, y, z)
for ax in fig.get_axes():
for label in ax.get_xticklabels():
label.set_ha('right')
label.set_rotation(30)
示例6: Pcolor
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
"""Makes a pseudocolor plot.
xs:
ys:
zs:
pcolor: boolean, whether to make a pseudocolor plot
contour: boolean, whether to make a contour plot
options: keyword args passed to plt.pcolor and/or plt.contour
"""
_Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
X, Y = np.meshgrid(xs, ys)
Z = zs
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
axes = plt.gca()
axes.xaxis.set_major_formatter(x_formatter)
if pcolor:
plt.pcolormesh(X, Y, Z, **options)
if contour:
cs = plt.contour(X, Y, Z, **options)
plt.clabel(cs, inline=1, fontsize=10)
示例7: test_pcolormesh
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolormesh():
n = 12
x = np.linspace(-1.5, 1.5, n)
y = np.linspace(-1.5, 1.5, n*2)
X, Y = np.meshgrid(x, y)
Qx = np.cos(Y) - np.cos(X)
Qz = np.sin(Y) + np.sin(X)
Qx = (Qx + 1.1)
Z = np.hypot(X, Y) / 5
Z = (Z - Z.min()) / Z.ptp()
# The color array can include masked values:
Zm = ma.masked_where(np.abs(Qz) < 0.5 * np.max(Qz), Z)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
ax1.pcolormesh(Qx, Qz, Z, lw=0.5, edgecolors='k')
ax2.pcolormesh(Qx, Qz, Z, lw=2, edgecolors=['b', 'w'])
ax3.pcolormesh(Qx, Qz, Z, shading="gouraud")
示例8: test_pcolorargs
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_pcolorargs():
n = 12
x = np.linspace(-1.5, 1.5, n)
y = np.linspace(-1.5, 1.5, n*2)
X, Y = np.meshgrid(x, y)
Z = np.sqrt(X**2 + Y**2)/5
_, ax = plt.subplots()
with pytest.raises(TypeError):
ax.pcolormesh(y, x, Z)
with pytest.raises(TypeError):
ax.pcolormesh(X, Y, Z.T)
with pytest.raises(TypeError):
ax.pcolormesh(x, y, Z[:-1, :-1], shading="gouraud")
with pytest.raises(TypeError):
ax.pcolormesh(X, Y, Z[:-1, :-1], shading="gouraud")
x[0] = np.NaN
with pytest.raises(ValueError):
ax.pcolormesh(x, y, Z[:-1, :-1])
with np.errstate(invalid='ignore'):
x = np.ma.array(x, mask=(x < 0))
with pytest.raises(ValueError):
ax.pcolormesh(x, y, Z[:-1, :-1])
示例9: test_visualize
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def test_visualize(self):
seg = audiosegment.from_file("furelise.wav")
duration_s = 2.5
hist_bins, times, amplitudes = seg.spectrogram(start_s=0, duration_s=duration_s, window_length_s=0.03, overlap=0.25)
amplitudes = 10 * np.log10(amplitudes + 1e-9)
plt.subplot(121)
plt.pcolormesh(times, hist_bins, amplitudes)
plt.xlabel("Time in Seconds")
plt.ylabel("Frequency in Hz")
hist_bins, times, amplitudes = seg.spectrogram(start_s=duration_s, duration_s=duration_s, window_length_s=0.03, overlap=0.25)
times += duration_s
amplitudes = 10 * np.log10(amplitudes + 1e-9)
plt.subplot(122)
plt.pcolormesh(times,hist_bins,amplitudes)
plt.show()
示例10: plot_sound_class_by_decending_accuracy
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_sound_class_by_decending_accuracy(experiment_path):
config_parser = configparser.ConfigParser()
config_parser.read(os.path.join(experiment_path, "conf.ini"))
model_name = config_parser['MODEL']['ModelName']
y_trues, y_scores = load_predictions(experiment_path)
y_true = [np.argmax(y_t) for y_t in y_trues]
y_pred = [np.argmax(y_s) for y_s in y_scores]
confusion_matrix = metrics.confusion_matrix(y_true, y_pred)
accuracies = []
(nb_rows, nb_cols) = confusion_matrix.shape
for i in range(nb_rows):
accuracy = confusion_matrix[i][i] / np.sum(confusion_matrix[i,:])
accuracies.append(accuracy)
fig = plt.figure()
plt.title("Sound Class ranked by Accuracy ({})".format(model_name))
plt.plot(sorted(accuracies, reverse=True))
plt.ylabel("Accuracy")
plt.xlabel("Rank")
# plt.pcolormesh(confusion_matrix, cmap=cmap)
fig.savefig(os.path.join(experiment_path, "descending_accuracy.png"))
示例11: plot_colormap_upgrade
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_colormap_upgrade(data, figSizeIn, xlabel, ylabel, cbarlabel, cmapIn, ytickRange, ytickTag, xtickRange=None, xtickTag=None, title=None, xmin=None, xmax=None, xgran=None, ymin=None, ymax=None, ygran=None):
if xmin != None:
y, x = np.mgrid[slice(ymin, ymax + ygran, ygran),
slice(xmin, xmax + xgran, xgran)]
fig = plt.figure(figsize = figSizeIn)
# plt.pcolor(data, cmap=cmapIn)
plt.pcolormesh(x, y, data, cmap=cmapIn)
plt.grid(which='major',axis='both')
plt.axis([x.min(), x.max(), y.min(), y.max()])
else:
plt.pcolor(data, cmap=cmapIn)
cbar = plt.colorbar()
cbar.set_label(cbarlabel, labelpad=-0.1)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
# if xtickTag:
# plt.xticks(xtickRange, xtickTag, fontsize=10)
#
# plt.yticks(ytickRange, ytickTag, fontsize=10)
plt.tight_layout()
if title:
plt.title(title)
plt.show()
return fig
示例12: plot_classification
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_classification(classification_gaussiannb, a , b):
a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0
step_size = 0.01
a_values, b_values = np.meshgrid(np.arange(a_min, a_max, step_size), np.arange(b_min, b_max, step_size))
mesh_output1 = classification_gaussiannb.predict(np.c_[a_values.ravel(), b_values.ravel()])
mesh_output2 = mesh_output1.reshape(a_values.shape)
plt.figure()
plt.pcolormesh(a_values, b_values, mesh_output2, cmap=plt.cm.gray)
plt.scatter(a[:, 0], a[:, 1], c=b , s=80, edgecolors='black', linewidth=1,cmap=plt.cm.Paired)
# specify the boundaries of the figure
plt.xlim(a_values.min(), a_values.max())
plt.ylim(b_values.min(), b_values.max())
# specify the ticks on the X and Y axes
plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1), 1.0)))
plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1), 1.0)))
plt.show()
開發者ID:PacktPublishing,項目名稱:Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition,代碼行數:27,代碼來源:Building_Naive_Bayes_classifier.py
示例13: plot_classification
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_classification(classification, a , b):
a_min, a_max = min(a[:, 0]) - 1.0, max(a[:, 0]) + 1.0
b_min, b_max = min(a[:, 1]) - 1.0, max(a[:, 1]) + 1.0
step_size = 0.01
a_values, b_values = np.meshgrid(np.arange(a_min, a_max, step_size), np.arange(b_min, b_max, step_size))
mesh_output1 = classification.predict(np.c_[a_values.ravel(), b_values.ravel()])
mesh_output2 = mesh_output1.reshape(a_values.shape)
plt.figure()
plt.pcolormesh(a_values, b_values, mesh_output2, cmap=plt.cm.gray)
plt.scatter(a[:, 0], a[:, 1], c=b , s=80, edgecolors='black', linewidth=1,cmap=plt.cm.Paired)
# specify the boundaries of the figure
plt.xlim(a_values.min(), a_values.max())
plt.ylim(b_values.min(), b_values.max())
# specify the ticks on the X and Y axes
plt.xticks((np.arange(int(min(a[:, 0])-1), int(max(a[:, 0])+1), 1.0)))
plt.yticks((np.arange(int(min(a[:, 1])-1), int(max(a[:, 1])+1), 1.0)))
plt.show()
開發者ID:PacktPublishing,項目名稱:Raspberry-Pi-3-Cookbook-for-Python-Programmers-Third-Edition,代碼行數:27,代碼來源:logistic_regression.py
示例14: plt_flow
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plt_flow(transform, ax, npts=300, title="$q(x)$", device="cpu"):
"""
Args:
transform: computes z_k and log(q_k) given z_0
"""
side = np.linspace(LOW, HIGH, npts)
xx, yy = np.meshgrid(side, side)
x = np.hstack([xx.reshape(-1, 1), yy.reshape(-1, 1)])
with torch.no_grad():
logqx, z = transform(torch.tensor(x).float().to(device))
#xx = z[:, 0].cpu().numpy().reshape(npts, npts)
#yy = z[:, 1].cpu().numpy().reshape(npts, npts)
qz = np.exp(logqx.cpu().numpy()).reshape(npts, npts)
plt.pcolormesh(xx, yy, qz)
ax.set_xlim(LOW, HIGH)
ax.set_ylim(LOW, HIGH)
cmap = matplotlib.cm.get_cmap(None)
ax.set_facecolor(cmap(0.))
ax.invert_yaxis()
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
ax.set_title(title)
示例15: plot_distance_map
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import pcolormesh [as 別名]
def plot_distance_map(self, colormap='Oranges', filename=None):
""" Plot the distance map after training.
:param colormap: {str} colormap to use, select from matplolib sequential colormaps
:param filename: {str} optional, if given, the plot is saved to this location
:return: plot shown or saved if a filename is given
"""
if np.mean(self.distmap) == 0.:
self.distance_map()
fig, ax = plt.subplots(figsize=self.shape)
plt.pcolormesh(self.distmap, cmap=colormap, edgecolors=None)
plt.colorbar()
plt.xticks(np.arange(.5, self.x + .5), range(self.x))
plt.yticks(np.arange(.5, self.y + .5), range(self.y))
plt.title("Distance Map", fontweight='bold', fontsize=28)
ax.set_aspect('equal')
if filename:
plt.savefig(filename)
plt.close()
print("Distance map plot done!")
else:
plt.show()