當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.locator_params方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.locator_params方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.locator_params方法的具體用法?Python pyplot.locator_params怎麽用?Python pyplot.locator_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.locator_params方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _show_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()

#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#//////////////////////////////////////////////////////////// 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:26,代碼來源:util.py

示例2: plot_one

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_one(title, ax, x, y, lim):
    ax.scatter(x, y-x, marker='x', c='k', alpha=0.5)
    # ax.set_title(r"%s" %title)
    #axarr[0].plot([-100,10000],[-100,10000], c='r')
    ax.axhline(y=0, c='r')
    scat = np.std(y-x)
    scat = round_2(scat)
    bias = np.mean(y-x)
    bias = round_2(bias)
    textstr = "RMS: %s \nBias: %s" %(scat, bias)
    ax.text(0.05,0.95, textstr, ha='left', va='top', transform=ax.transAxes)
    ax.locator_params(axis='x', nbins=5)
    ax.locator_params(axis='y', nbins=5)
    #ymin = -10*scat
    #ymax = 10*scat
    ax.set_ylim(-1*lim, lim)
    #print(ymin, ymax)
    num_up = sum((y-x)>lim)
    num_down = sum((y-x)<-1*lim)
    print("%s above, %s below" %(num_up, num_down)) 
開發者ID:annayqho,項目名稱:TheCannon,代碼行數:22,代碼來源:plot_apogee_lamost_cannon.py

示例3: finalize_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def finalize_plot(allticks,handles):
    plt.locator_params(axis='x', nticks=Noracles,nbins=Noracles)
    plt.yticks([x[0] for x in allticks], [x[1] for x in allticks])
    plt.tick_params(
        axis='y',          # changes apply to the x-axis
        which='both',      # both major and minor ticks are affected
        left='off',      # ticks along the bottom edge are off
        right='off'         # ticks along the top edge are off
    )
    if LEGEND:
        plt.legend([h[0] for h in handles],seriesnames,
                   loc='upper right',borderaxespad=0.,
                   ncol=1,fontsize=10,numpoints=1)
    plt.gcf().tight_layout()


######################################################
# Data processing 
開發者ID:gsig,項目名稱:actions-for-actions,代碼行數:20,代碼來源:oraclesplot.py

示例4: make_slashdot_figures

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def make_slashdot_figures(output_path_prefix, method_name_list, slashdot_mse, slashdot_jaccard, slashdot_k_list):
    sns.set_style("darkgrid")
    sns.set_context("paper")

    translator = get_method_name_to_legend_name_dict()

    slashdot_k_list = list(slashdot_k_list)

    fig, axes = plt.subplots(1, 2, sharex=True)

    axes[0].set_title("SlashDot Comments")
    axes[1].set_title("SlashDot Users")

    plt.locator_params(nbins=8)

    # Comments
    for m, method in enumerate(method_name_list):
        axes[0].set_ylabel("MSE")
        axes[0].set_xlabel("Lifetime (sec)")
        axes[0].plot(slashdot_k_list[1:],
                     handle_nan(slashdot_mse[method]["comments"].mean(axis=1))[1:],
                     label=translator[method])

    # Users
    for m, method in enumerate(method_name_list):
        # axes[1].set_ylabel("MSE")
        axes[1].set_xlabel("Lifetime (sec)")
        axes[1].plot(slashdot_k_list[1:],
                     handle_nan(slashdot_mse[method]["users"].mean(axis=1))[1:],
                     label=translator[method])


    axes[1].legend(loc="upper right")

    # plt.show()
    plt.savefig(output_path_prefix + "_mse_slashdot_SNOW" + ".png", format="png")
    plt.savefig(output_path_prefix + "_mse_slashdot_SNOW" + ".eps", format="eps") 
開發者ID:MKLab-ITI,項目名稱:news-popularity-prediction,代碼行數:39,代碼來源:slashdot_results.py

示例5: make_barrapunto_figures

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def make_barrapunto_figures(output_path_prefix, method_name_list, barrapunto_mse, barrapunto_jaccard, barrapunto_k_list):
    sns.set_style("darkgrid")
    sns.set_context("paper")

    translator = get_method_name_to_legend_name_dict()

    barrapunto_k_list = list(barrapunto_k_list)

    fig, axes = plt.subplots(1, 2, sharex=True)

    axes[0].set_title("BarraPunto Comments")
    axes[1].set_title("BarraPunto Users")

    plt.locator_params(nbins=8)

    # Comments
    for m, method in enumerate(method_name_list):
        axes[0].set_ylabel("MSE")
        axes[0].set_xlabel("Lifetime (sec)")
        axes[0].plot(barrapunto_k_list[1:],
                        handle_nan(barrapunto_mse[method]["comments"].mean(axis=1))[1:],
                        label=translator[method])

    # Users
    for m, method in enumerate(method_name_list):
        # axes[1].set_ylabel("MSE")
        axes[1].set_xlabel("Lifetime (sec)")
        axes[1].plot(barrapunto_k_list[1:],
                        handle_nan(barrapunto_mse[method]["users"].mean(axis=1))[1:],
                        label=translator[method])


    axes[1].legend(loc="upper right")

    # plt.show()
    plt.savefig(output_path_prefix + "_mse_barrapunto_SNOW" + ".png", format="png")
    plt.savefig(output_path_prefix + "_mse_barrapunto_SNOW" + ".eps", format="eps") 
開發者ID:MKLab-ITI,項目名稱:news-popularity-prediction,代碼行數:39,代碼來源:slashdot_results.py

示例6: create_grid

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def create_grid():
    fig = plt.figure(figsize=(15,20))
    #plt.locator_params(nbins=5)
    #ax = fig.add_subplot(111)
    #plt.setp(ax.get_yticklabels(), visible=False)
    #plt.setp(ax.get_xticklabels(), visible=False)
    ax00 = fig.add_subplot(331)
    ax01 = fig.add_subplot(332, sharex=ax00, sharey=ax00)
    plt.setp(ax01.get_yticklabels(), visible=False)
    xticks = ax01.xaxis.get_major_ticks()
    xticks[0].set_visible(False)
    ax02 = fig.add_subplot(333, sharex=ax00, sharey=ax00)
    plt.setp(ax02.get_yticklabels(), visible=False)
    xticks = ax02.xaxis.get_major_ticks()
    xticks[0].set_visible(False) 
    ax10 = fig.add_subplot(334)
    ax11 = fig.add_subplot(335, sharex=ax10, sharey=ax10)
    plt.setp(ax11.get_yticklabels(), visible=False)
    xticks = ax11.xaxis.get_major_ticks()
    xticks[0].set_visible(False)
    ax12 = fig.add_subplot(336, sharex=ax10, sharey=ax10)
    plt.setp(ax12.get_yticklabels(), visible=False)
    xticks = ax12.xaxis.get_major_ticks()
    xticks[0].set_visible(False)
    ax20 = fig.add_subplot(337)
    ax21 = fig.add_subplot(338, sharex=ax20, sharey=ax20)
    plt.setp(ax21.get_yticklabels(), visible=False)
    xticks = ax21.xaxis.get_major_ticks()
    xticks[0].set_visible(False)
    ax22 = fig.add_subplot(339, sharex=ax20, sharey=ax20)
    plt.setp(ax22.get_yticklabels(), visible=False)
    xticks = ax22.xaxis.get_major_ticks()
    xticks[0].set_visible(False)
    fig.subplots_adjust(wspace=0)
    fig.subplots_adjust(hspace=0.2)
    axarr = ((ax00,ax01,ax02), (ax10,ax11,ax12), (ax20,ax21,ax22))
    return fig, axarr 
開發者ID:annayqho,項目名稱:TheCannon,代碼行數:39,代碼來源:plot_apogee_lamost_cannon.py

示例7: format_and_label_axes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def format_and_label_axes(var, posys, axes, ylabel=True):
    "Formats and labels axes"
    for posy, ax in zip(posys, axes):
        if ylabel:
            if hasattr(posy, "key"):
                ylabel = (posy.key.descr.get("label", posy.key.name)
                          + " [%s]" % posy.key.unitstr(dimless="-"))
            else:
                ylabel = str(posy)
            ax.set_ylabel(ylabel)
        ax.grid(color="0.6")
        # ax.set_frame_on(False)
        for item in [ax.xaxis.label, ax.yaxis.label]:
            item.set_fontsize(12)
        for item in ax.get_xticklabels() + ax.get_yticklabels():
            item.set_fontsize(9)
        ax.tick_params(length=0)
        ax.spines['left'].set_visible(False)
        ax.spines['top'].set_visible(False)
        for i in ax.spines.values():
            i.set_linewidth(0.6)
            i.set_color("0.6")
            i.set_linestyle("dotted")
    xlabel = (var.key.descr.get("label", var.key.name)
              + " [%s]" % var.key.unitstr(dimless="-"))
    ax.set_xlabel(xlabel)  # pylint: disable=undefined-loop-variable
    plt.locator_params(nbins=4)
    plt.subplots_adjust(wspace=0.15)


# pylint: disable=too-many-locals,too-many-branches,too-many-statements 
開發者ID:convexengineering,項目名稱:gpkit,代碼行數:33,代碼來源:plot_sweep.py

示例8: make_figure_a

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def make_figure_a(S, F, C):
    """
    Plot fluorescence traces, filtered fluorescence, and spike times
    for three neurons
    """
    col = harvard_colors()
    dt = 0.02
    T_start = 0
    T_stop = 1 * 50 * 60
    t = dt * np.arange(T_start, T_stop)

    ks = [0,1]
    nk = len(ks)
    fig = create_figure((3,3))
    for ind,k in enumerate(ks):
        ax = fig.add_subplot(nk,1,ind+1)
        ax.plot(t, F[T_start:T_stop, k], color=col[1], label="$F$")    # Plot the raw flourescence in blue
        ax.plot(t, C[T_start:T_stop, k], color=col[0], lw=1.5, label="$\widehat{F}$")    # Plot the filtered flourescence in red
        spks  = np.where(S[T_start:T_stop, k])[0]
        ax.plot(t[spks], C[spks,k], 'ko', label="S")            # Plot the spike times in black

        # Make a legend
        if ind == 0:
            # Put a legend above
            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
                       ncol=3, mode="expand", borderaxespad=0.,
                       prop={'size':9})

        # Add labels
        ax.set_ylabel("$F_%d(t)$" % (k+1))
        if ind == nk-1:
            ax.set_xlabel("Time $t$ [sec]")

        # Format the ticks
        ax.set_ylim([-0.1,1.0])
        plt.locator_params(nbins=5, axis="y")


    plt.subplots_adjust(left=0.2, bottom=0.2)
    fig.savefig("figure3a.pdf")
    plt.show() 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:43,代碼來源:make_figure.py

示例9: _show_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
    try:
        import matplotlib.pyplot as plt
    except ImportError:
        raise ImportError(
            'The plot function requires matplotlib to be installed.'
            'See http://matplotlib.org/'
        )

    plt.locator_params(axis='y', nbins=3)
    axes = plt.axes()
    axes.yaxis.grid()
    plt.plot(x_values, y_values, 'ro', color='red')
    plt.ylim(ymin=-1.2, ymax=1.2)
    plt.tight_layout(pad=5)
    if x_labels:
        plt.xticks(x_values, x_labels, rotation='vertical')
    if y_labels:
        plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
    # Pad margins so that markers are not clipped by the axes
    plt.margins(0.2)
    plt.show()


# ////////////////////////////////////////////////////////////
# { Parsing and conversion functions
# //////////////////////////////////////////////////////////// 
開發者ID:V1EngineeringInc,項目名稱:V1EngineeringInc-Docs,代碼行數:29,代碼來源:util.py

示例10: bar_chart

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def bar_chart(envs, victim_id, n_components, covariance, savefile=None):
    """Bar chart of mean log probability for all opponent types, grouped by environment.
    For unspecified parameters, see get_full_directory.

    :param envs: (list of str) list of environments.
    :param savefile: (None or str) path to save figure to.
    """
    dfs = []
    for env in envs:
        df = load_metadata(env, victim_id, n_components, covariance)
        df["Environment"] = PRETTY_ENVS.get(env, env)
        dfs.append(df)
    longform = pd.concat(dfs)
    longform["opponent_id"] = longform["opponent_id"].apply(PRETTY_OPPONENTS.get)
    longform = longform.reset_index(drop=True)

    width, height = plt.rcParams.get("figure.figsize")
    legend_height = 0.4
    left_margin_in = 0.55
    top_margin_in = legend_height + 0.05
    bottom_margin_in = 0.5
    gridspec_kw = {
        "left": left_margin_in / width,
        "top": 1 - (top_margin_in / height),
        "bottom": bottom_margin_in / height,
    }
    fig, ax = plt.subplots(1, 1, gridspec_kw=gridspec_kw)

    # Make colors consistent with previous figures
    standard_cycle = list(plt.rcParams["axes.prop_cycle"])
    palette = {
        label: standard_cycle[CYCLE_ORDER.index(label)]["color"]
        for label in PRETTY_OPPONENTS.values()
    }

    # Actually plot
    sns.barplot(
        x="Environment",
        y="log_proba",
        hue="opponent_id",
        order=PRETTY_ENVS.values(),
        hue_order=BAR_ORDER,
        data=longform,
        palette=palette,
        errwidth=1,
    )
    ax.set_ylabel("Mean Log Probability Density")
    plt.locator_params(axis="y", nbins=4)
    util.rotate_labels(ax, xrot=0)

    # Plot our own legend
    ax.get_legend().remove()
    legend_entries = ax.get_legend_handles_labels()
    util.outside_legend(
        legend_entries, 3, fig, ax, ax, legend_padding=0.05, legend_height=0.6, handletextpad=0.2
    )

    if savefile is not None:
        fig.savefig(savefile)

    return fig 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:63,代碼來源:visualize.py

示例11: plot_layer_correlation

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_layer_correlation(rates, activations, title, config, path=None,
                           same_xylim=True):
    """
    Plot correlation between spikerates and activations of a specific layer,
    as 2D-dot-plot.

    Parameters
    ----------

    rates: np.array
        The spikerates of a layer, flattened to 1D.
    activations: Union[ndarray, Iterable]
        The activations of a layer, flattened to 1D.
    title: str
        Plot title.
    config: configparser.ConfigParser
        Settings.
    path: Optional[str]
        If not ``None``, specifies where to save the resulting image. Else,
        display plots without saving.
    same_xylim: Optional[bool]
        Whether to use the same axis limit on the ``rates`` and
        ``activations``. If ``True``, the maximum is chosen. Default: ``True``.
    """

    # Determine percentage of saturated neurons. Need to subtract one time step
    dt = config.getfloat('simulation', 'dt')
    duration = config.getint('simulation', 'duration')
    p = np.mean(np.greater_equal(rates, 1000 / dt - 1000 / duration / dt))

    plt.figure()
    plt.plot(activations, rates, '.')
    plt.annotate("{:.2%} units saturated.".format(p), xy=(1, 1),
                 xycoords='axes fraction', xytext=(-200, -20),
                 textcoords='offset points')
    plt.title(title, fontsize=20)
    plt.locator_params(nbins=4)
    lim = max([1.1, max(activations), max(rates)]) if same_xylim else None
    plt.xlim([0, lim])
    plt.ylim([0, lim])
    plt.xlabel('ANN activations', fontsize=16)
    plt.ylabel('SNN spikerates [Hz]', fontsize=16)
    if path is not None:
        filename = '5Correlation'
        plt.savefig(os.path.join(path, filename), bbox_inches='tight')
    else:
        plt.show()
    plt.close() 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:50,代碼來源:plotting.py

示例12: plot_network_correlations

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_network_correlations(spikerates, layer_activations):
    """Plot the correlation between SNN spiketrains and ANN activations.

    For each layer, the method draws a scatter plot, showing the correlation
    between the average firing rate of neurons in the SNN layer and the
    activation of the corresponding neurons in the ANN layer.

    Parameters
    ----------

    spikerates: list of tuples ``(spikerate, label)``.

        ``spikerate`` is a 1D array containing the mean firing rates of the
        neurons in a specific layer.

        ``label`` is a string specifying both the layer type and the index,
        e.g. ``'3Dense'``.

    layer_activations: list of tuples ``(activations, label)``
        Each entry represents a layer in the ANN for which an activation can be
        calculated (e.g. ``Dense``, ``Conv2D``).

        ``activations`` is an array of the same dimension as the corresponding
        layer, containing the activations of Dense or Convolution layers.

        ``label`` is a string specifying the layer type, e.g. ``'Dense'``.
    """

    num_layers = len(layer_activations)
    # Determine optimal shape for rectangular arrangement of plots
    num_rows = int(np.ceil(np.sqrt(num_layers)))
    num_cols = int(np.ceil(num_layers / num_rows))
    f, ax = plt.subplots(num_rows, num_cols, squeeze=False,
                         figsize=(8, 1 + num_rows * 4))
    for i in range(num_rows):
        for j in range(num_cols):
            layer_num = j + i * num_cols
            if layer_num >= num_layers:
                break
            ax[i, j].plot(layer_activations[layer_num][0].flatten(),
                          spikerates[layer_num][0], '.')
            ax[i, j].set_title(spikerates[layer_num][1], fontsize='medium')
            ax[i, j].locator_params(nbins=4)
            ax[i, j].set_xlim([None,
                               np.max(layer_activations[layer_num][0]) * 1.1])
            ax[i, j].set_ylim([None, max(spikerates[layer_num][0]) * 1.1])
    f.suptitle('ANN-SNN correlations', fontsize=20)
    f.subplots_adjust(wspace=0.3, hspace=0.3)
    f.text(0.5, 0.04, 'SNN spikerates (Hz)', ha='center', fontsize=16)
    f.text(0.04, 0.5, 'ANN activations', va='center', rotation='vertical',
           fontsize=16) 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:53,代碼來源:plotting.py

示例13: plot_hist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_hist(h, title=None, layer_label=None, path=None, scale_fac=None):
    """Plot a histogram over two datasets.

    Parameters
    ----------

    h: dict
        Dictionary of datasets to plot in histogram.
    title: string, optional
        Title of histogram.
    layer_label: string, optional
        Label of layer from which data was taken.
    path: string, optional
        If not ``None``, specifies where to save the resulting image. Else,
        display plots without saving.
    scale_fac: float, optional
        The value with which parameters are normalized (maximum of activations
        or parameter value of a layer). If given, will be insterted into plot
        title.
    """

    keys = sorted(h.keys())
    plt.hist([h[key] for key in keys], label=keys, log=True, bottom=1,
             bins=1000, histtype='stepfilled', alpha=0.5, edgecolor='none')
    if scale_fac:
        plt.axvline(scale_fac, color='red', linestyle='dashed', linewidth=2,
                    label='scale factor')
    plt.legend()
    plt.locator_params(axis='x', nbins=5)
    if title and layer_label:
        if 'Spikerates' in title:
            filename = '4' + title + '_distribution'
            unit = '[Hz]'
        else:
            filename = layer_label + '_' + title + '_distribution'
            unit = ''
        facs = "Applied divisor: {:.2f}".format(scale_fac) if scale_fac else ''
        plt.title('{} distribution {} \n of layer {} \n {}'.format(
            title, unit, layer_label, facs))
    else:
        plt.title('Distribution')
        filename = 'Activity_distribution'
    if path:
        plt.savefig(os.path.join(path, filename), bbox_inches='tight')
    else:
        plt.show()
    plt.close() 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:49,代碼來源:plotting.py

示例14: plot_activ_hist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_activ_hist(h, title=None, layer_label=None, path=None,
                    scale_fac=None):
    """Plot a histogram over all activities of a network.

    Parameters
    ----------

    h: dict
        Dictionary of datasets to plot in histogram.
    title: string, optional
        Title of histogram.
    layer_label: string, optional
        Label of layer from which data was taken.
    path: string, optional
        If not ``None``, specifies where to save the resulting image. Else,
        display plots without saving.
    scale_fac: float, optional
        The value with which parameters are normalized (maximum of activations
        or parameter value of a layer). If given, will be insterted into plot
        title.
    """

    keys = sorted(h.keys())
    plt.hist([h[key] for key in keys], label=keys, bins=1000, edgecolor='none',
             histtype='stepfilled', log=True, bottom=1)
    if scale_fac:
        plt.axvline(scale_fac, color='red', linestyle='dashed', linewidth=2,
                    label='scale factor')
    plt.legend()
    plt.locator_params(axis='x', nbins=5)
    plt.xlabel('ANN activations')
    plt.ylabel('Count')
    plt.xlim(xmin=0)
    if title and layer_label:
        filename = layer_label + '_' + 'activ_distribution'
        facs = "Applied divisor: {:.2f}".format(scale_fac) if scale_fac else ''
        plt.title('{} distribution \n of layer {} \n {}'.format(
            title, layer_label, facs))
    else:
        plt.title('Distribution')
        filename = 'Activity_distribution'
    if path:
        plt.savefig(os.path.join(path, filename), bbox_inches='tight')
    else:
        plt.show()
    plt.close() 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:48,代碼來源:plotting.py

示例15: plot_max_activ_hist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import locator_params [as 別名]
def plot_max_activ_hist(h, title=None, layer_label=None, path=None,
                        scale_fac=None):
    """Plot a histogram over the maximum activations.

    Parameters
    ----------

    h: dict
        Dictionary of datasets to plot in histogram.
    title: string, optional
        Title of histogram.
    layer_label: string, optional
        Label of layer from which data was taken.
    path: string, optional
        If not ``None``, specifies where to save the resulting image. Else,
        display plots without saving.
    scale_fac: float, optional
        The value with which parameters are normalized (maximum of activations
        or parameter value of a layer). If given, will be insterted into plot
        title.
    """

    keys = sorted(h.keys())
    plt.hist([h[key] for key in keys], label=keys, bins=1000, edgecolor='none',
             histtype='stepfilled')
    plt.xlabel('Maximum ANN activations')
    plt.ylabel('Sample count')
    if scale_fac:
        plt.axvline(scale_fac, color='red', linestyle='dashed', linewidth=2,
                    label='scale factor')
    plt.legend()
    plt.locator_params(axis='x', nbins=5)
    if title and layer_label:
        filename = layer_label + '_' + 'maximum_activity_distribution'
        facs = "Applied divisor: {:.2f}".format(scale_fac) if scale_fac else ''
        plt.title('{} distribution \n of layer {} \n {}'.format(
            title, layer_label, facs))
    else:
        plt.title('Distribution')
        filename = 'Maximum_activity_distribution'
    if path:
        plt.savefig(os.path.join(path, filename), bbox_inches='tight')
    else:
        plt.show()
    plt.close() 
開發者ID:NeuromorphicProcessorProject,項目名稱:snn_toolbox,代碼行數:47,代碼來源:plotting.py


注:本文中的matplotlib.pyplot.locator_params方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。