本文整理匯總了Python中matplotlib.pyplot.imsave方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.imsave方法的具體用法?Python pyplot.imsave怎麽用?Python pyplot.imsave使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.imsave方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: wishart_test
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def wishart_test(mode, ENL, percent):
# Test statistic over the whole area
w = Wishart(april, may, ENL, ENL, mode)
# Test statistic over the no change region
wno = Wishart(april.region(region_nochange), may.region(region_nochange), ENL, ENL, mode)
# Histogram, no change region
f, ax = wno.histogram(percent)
hist_filename = "fig/wishart/{}/lnq.hist.ENL{}.pdf".format(mode, ENL)
f.savefig(hist_filename, bbox_inches='tight')
# Histogram, entire region
f, ax = w.histogram(percent)
hist_filename = "fig/wishart/{}/lnq.hist.total.ENL{}.pdf".format(mode, ENL)
f.savefig(hist_filename, bbox_inches='tight')
# Binary image
im = w.image_binary(percent)
plt.imsave("fig/wishart/{}/lnq.ENL{}.{}.jpg".format(mode, ENL, percent), im, cmap="gray")
示例2: __call__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def __call__(self, result, out_dir, image_name):
result_tool = ShowResultTool()
result = result_tool(result)
if 'GrayDisparity' in result.keys():
grayEstDisp = result['GrayDisparity']
gray_save_path = osp.join(out_dir, 'flow_0')
mkdir_or_exist(gray_save_path)
skimage.io.imsave(osp.join(gray_save_path, image_name), (grayEstDisp * 256).astype('uint16'))
if 'ColorDisparity' in result.keys():
colorEstDisp = result['ColorDisparity']
color_save_path = osp.join(out_dir, 'color_disp')
mkdir_or_exist(color_save_path)
plt.imsave(osp.join(color_save_path, image_name), colorEstDisp, cmap=plt.cm.hot)
if 'GroupColor' in result.keys():
group_save_path = os.path.join(out_dir, 'group_flow')
mkdir_or_exist(group_save_path)
plt.imsave(osp.join(group_save_path, image_name), result['GroupColor'], cmap=plt.cm.hot)
示例3: _custom_get
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def _custom_get(self, i, no, all_returns):
for dataset_name, d in self.datasets_attr.items():
if d['range'][0] <= i and d['range'][1] > i:
image_root = d['image_root']
d_name = dataset_name
break
image_new, link_new, target_new, weight_new, contour_i = self.aspect_resize(self.loader(image_root+'/'+self.images[i]), self.annots[i].copy(), self.remove_annots[i].copy())#, big_target_new
image_new, target_new, link_new, contour_i = self.rotate(image_new, target_new, link_new, contour_i, 90)
show = True
if show:
plt.imsave('img.png',image_new)
num = np.array(image_new)
cv2.drawContours(num, contour_i, -1, (0,255,0), 3)
plt.imsave('contours.png',num)
plt.imsave('target.png',target_new)
img = self.transform(image_new).unsqueeze(0)
target = self.target_transform(target_new).unsqueeze(0)
link = self.target_transform(link_new).unsqueeze(0)
weight = torch.FloatTensor(weight_new).unsqueeze(0).unsqueeze(0)
all_returns[no] = [img, target, link, weight, contour_i, d_name]
示例4: create_annot1
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def create_annot1(self):
all_paths = self.get_all_names_refresh()
for i in all_paths:
if os.path.exists(self.label_save_location+'.'.join(i.split('.')[:-1])+'.pkl'):
continue
print(i)
image = Image.open(self.image_net_location+i).resize([768, 512]).convert('RGB')
image = self.transparent(np.array(image),self.transparent_mean,self.transparent_gaussian)
image = Image.fromarray(image.astype(np.uint8))
final_image, coordinate_label ,label=self.generate_watermark_on_images(image)
with open(self.label_save_location+'.'.join(i.split('.')[:-1])+'.pkl', 'wb') as f:
pickle.dump([coordinate_label, label], f)
plt.imsave(self.image_save_location+i, final_image)
示例5: prepare_visualize
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def prepare_visualize(result, epoch, work_dir, image_name):
result_tool = ShowResultTool()
result = result_tool(result)
mkdir_or_exist(os.path.join(work_dir, image_name))
save_path = os.path.join(work_dir, image_name, '{}.png'.format(epoch))
plt.imsave(save_path, result['GroupColor'], cmap=plt.cm.hot)
log_result = {}
for pred_item in result.keys():
log_name = image_name + '/' + pred_item
if pred_item == 'Flow':
log_result['image/' + log_name] = result[pred_item]
if pred_item == 'GroundTruth':
log_result['image/' + log_name] = result[pred_item]
return log_result
示例6: __call__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def __call__(self, result, out_dir, image_name):
result_tool = ShowResultTool()
result = result_tool(result, color_map='gray', bins=100)
if 'GrayDisparity' in result.keys():
grayEstDisp = result['GrayDisparity']
gray_save_path = osp.join(out_dir, 'disp_0')
mkdir_or_exist(gray_save_path)
skimage.io.imsave(osp.join(gray_save_path, image_name), (grayEstDisp * 256).astype('uint16'))
if 'ColorDisparity' in result.keys():
colorEstDisp = result['ColorDisparity']
color_save_path = osp.join(out_dir, 'color_disp')
mkdir_or_exist(color_save_path)
plt.imsave(osp.join(color_save_path, image_name), colorEstDisp, cmap=plt.cm.hot)
if 'GroupColor' in result.keys():
group_save_path = os.path.join(out_dir, 'group_disp')
mkdir_or_exist(group_save_path)
plt.imsave(osp.join(group_save_path, image_name), result['GroupColor'], cmap=plt.cm.hot)
if 'ColorConfidence' in result.keys():
conf_save_path = os.path.join(out_dir, 'confidence')
mkdir_or_exist(conf_save_path)
plt.imsave(osp.join(conf_save_path, image_name), result['ColorConfidence'])
示例7: log_images
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def log_images(self, tag, images, step):
"""Logs a list of images."""
im_summaries = []
for nr, img in enumerate(images):
# Write the image to a string
s = StringIO()
plt.imsave(s, img, format='png')
# Create an Image object
img_sum = tf.Summary.Image(
encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
im_summaries.append(
tf.Summary.Value(tag='%s/%d' % (tag, nr), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=im_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()
示例8: do_batches
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def do_batches(self, fn, batch_generator, metrics):
loss_total = 0
batch_count = 0
for i, batch in enumerate(tqdm(batch_generator)):
inputs, targets, weights, _ = batch
err, l2_loss, acc, dice, true, prob, prob_b = fn(inputs, targets, weights)
metrics.append([err, l2_loss, acc, dice])
metrics.append_prediction(true, prob_b)
if i % 10 == 0:
im = np.hstack((
true[:OUTPUT_SIZE**2].reshape(OUTPUT_SIZE,OUTPUT_SIZE),
prob[:OUTPUT_SIZE**2][:,1].reshape(OUTPUT_SIZE,OUTPUT_SIZE)))
plt.imsave(os.path.join(self.image_folder,'{0}_epoch{1}.png'.format(metrics.name, self.epoch)),im)
loss_total += err
batch_count += 1
return loss_total / batch_count
示例9: test_imsave_color_alpha
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def test_imsave_color_alpha():
# Test that imsave accept arrays with ndim=3 where the third dimension is
# color and alpha without raising any exceptions, and that the data is
# acceptably preserved through a save/read roundtrip.
from numpy import random
random.seed(1)
data = random.rand(256, 128, 4)
buff = io.BytesIO()
plt.imsave(buff, data)
buff.seek(0)
arr_buf = plt.imread(buff)
# Recreate the float -> uint8 -> float32 conversion of the data
data = (255*data).astype('uint8').astype('float32')/255
# Wherever alpha values were rounded down to 0, the rgb values all get set
# to 0 during imsave (this is reasonable behaviour).
# Recreate that here:
for j in range(3):
data[data[:, :, 3] == 0, j] = 1
assert_array_equal(data, arr_buf)
示例10: add_image
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def add_image(self, image):
"""
Saves image to file.
Args:
image (HxWx3).
Returns:
str: filename.
"""
if self.temp_dir is None:
self.temp_dir = tempfile.mkdtemp()
if self.img_shape is None:
self.img_shape = image.shape
assert self.img_shape == image.shape
filename = self.get_filename(self.current_index)
plt.imsave(fname=filename, arr=image)
self.current_index += 1
return filename
示例11: plot_images
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def plot_images(images, shape, path, filename, n_rows = 10, color = True):
# finally save to file
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
images = reshape_and_tile_images(images, shape, n_rows)
if color:
from matplotlib import cm
plt.imsave(fname=path+filename+".png", arr=images, cmap=cm.Greys_r)
else:
plt.imsave(fname=path+filename+".png", arr=images, cmap='Greys')
#plt.axis('off')
#plt.tight_layout()
#plt.savefig(path + filename + ".png", format="png")
print "saving image to " + path + filename + ".png"
plt.close()
示例12: draw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def draw(distance, objects, file_name):
distance = distance.view(-1).cpu().numpy()
objects = objects.view(-1).cpu().numpy()
distance = np.around(distance / 4.0)
distance[distance > 15] = 15
screen = np.zeros([DoomObject.Type.MAX, 16, 32], dtype=np.float32)
x = np.around(16 + tan * distance).astype(int)
y = np.around(distance).astype(int)
todelete = np.where(y == 15)
y = np.delete(y, todelete, axis=0)
x = np.delete(x, todelete, axis=0)
channels = np.delete(objects, todelete, axis=0)
screen[channels, y, x] = 1
img = screen[[8, 7, 6], :]
img = img.transpose(1, 2, 0)
plt.imsave(file_name, img)
示例13: drawLines
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def drawLines(X1,X2,Y1,Y2,dis,img,num = 10):
info = list(np.dstack((X1,X2,Y1,Y2,dis))[0])
info = sorted(info,key=lambda x:x[-1])
info = np.array(info)
info = info[:min(num,info.shape[0]),:]
img = Lines(img,info)
#plt.imsave('./sift/3.jpg', img)
if len(img.shape) == 2:
plt.imshow(img.astype(np.uint8),cmap='gray')
else:
plt.imshow(img.astype(np.uint8))
plt.axis('off')
#plt.plot([info[:,0], info[:,1]], [info[:,2], info[:,3]], 'c')
# fig = plt.gcf()
# fig.set_size_inches(int(img.shape[0]/100.0),int(img.shape[1]/100.0))
#plt.savefig('./sift/2.jpg')
plt.show()
示例14: gabor_feature_single_job
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def gabor_feature_single_job(a, filters, fm_i, label, cluster_center_number, save_flag):
# convolution
start_time = time.time()
# b=SN.correlate(a,filters[i]) # too slow
b = signal.correlate(a, filters[fm_i], mode='same')
end_time = time.time()
print('feature %d done (%f s)' % (fm_i, end_time - start_time))
# show Gabor filter output
if save_flag:
img = (b[:, :, int(a.shape[2] / 2)]).copy()
plt.imsave('./result/gabor_output(%d).png' % fm_i, img, cmap='gray') # save fig
# generate feature vector
start_time = time.time()
result = generate_feature_vector(b=b, label=label, cluster_center_number=cluster_center_number)
end_time = time.time()
print('feature vector %d done (%f s)' % (fm_i, end_time - start_time))
return fm_i, result
示例15: test_get_dataset_from_png
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imsave [as 別名]
def test_get_dataset_from_png(self, _config):
try:
import matplotlib.pyplot as plt
except ImportError:
return
datapath = _config.get('paths', 'dataset_path')
classpath = os.path.join(datapath, 'class_0')
os.mkdir(classpath)
data = np.random.random_sample((10, 10, 3))
plt.imsave(os.path.join(classpath, 'image_0.png'), data)
_config.read_dict({
'input': {'dataset_format': 'png',
'dataflow_kwargs': "{'target_size': (11, 12)}",
'datagen_kwargs': "{'rescale': 0.003922,"
" 'featurewise_center': True,"
" 'featurewise_std_normalization':"
" True}"}})
normset, testset = get_dataset(_config)
assert all([normset, testset])