當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.imread方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.imread方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.imread方法的具體用法?Python pyplot.imread怎麽用?Python pyplot.imread使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.imread方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_boxes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def draw_boxes(filename, v_boxes, v_labels, v_scores, output_photo_name):
	# load the image
	data = pyplot.imread(filename)
	# plot the image
	pyplot.imshow(data)
	# get the context for drawing boxes
	ax = pyplot.gca()
	# plot each box
	for i in range(len(v_boxes)):
		box = v_boxes[i]
		# get coordinates
		y1, x1, y2, x2 = box.ymin, box.xmin, box.ymax, box.xmax
		# calculate width and height of the box
		width, height = x2 - x1, y2 - y1
		# create the shape
		rect = Rectangle((x1, y1), width, height, fill=False, color='white')
		# draw the box
		ax.add_patch(rect)
		# draw text and score in top left corner
		label = "%s (%.3f)" % (v_labels[i], v_scores[i])
		pyplot.text(x1, y1, label, color='white')
	# show the plot
	#pyplot.show()	
	pyplot.savefig(output_photo_name) 
開發者ID:produvia,項目名稱:ai-platform,代碼行數:26,代碼來源:yolo_image.py

示例2: load_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_data(folder):
    images_sat = [img for img in os.listdir(os.path.join(folder, "sat_img")) if fnmatch.fnmatch(img, "*.tif*")]
    images_map = [img for img in os.listdir(os.path.join(folder, "map")) if fnmatch.fnmatch(img, "*.tif*")]
    assert(len(images_sat) == len(images_map))
    images_sat.sort()
    images_map.sort()
    # images are 1500 by 1500 pixels each
    data = np.zeros((len(images_sat), 3, 1500, 1500), dtype=np.uint8)
    target = np.zeros((len(images_sat), 1, 1500, 1500), dtype=np.uint8)
    ctr = 0
    for sat_im, map_im in zip(images_sat, images_map):
        data[ctr] = plt.imread(os.path.join(folder, "sat_img", sat_im)).transpose((2, 0, 1))
        # target has values 0 and 255. make that 0 and 1
        target[ctr, 0] = plt.imread(os.path.join(folder, "map", map_im))/255
        ctr += 1
    return data, target 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:18,代碼來源:massachusetts_road_dataset_utils.py

示例3: load_image

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_image(image_path):
    """
    加載圖像
    :param image_path: 圖像路徑
    :return: [h,w,3] numpy數組
    """
    image = plt.imread(image_path)
    # 灰度圖轉為RGB
    if len(image.shape) == 2:
        image = np.expand_dims(image, axis=2)
        image = np.tile(image, (1, 1, 3))
    elif image.shape[-1] == 1:
        image = skimage.color.gray2rgb(image)  # io.imread 報ValueError: Input image expected to be RGB, RGBA or gray
    # 標準化為0~255之間
    if image.dtype == np.float32:
        image *= 255
        image = image.astype(np.uint8)
    # 刪除alpha通道
    return image[..., :3] 
開發者ID:yizt,項目名稱:keras-ctpn,代碼行數:21,代碼來源:image_utils.py

示例4: load_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_data(self):
        # Please make sure to change this function to load your train/validation/test data.
        train_data = np.array([plt.imread('./data/test_images/0.jpg'), plt.imread('./data/test_images/1.jpg'),
                      plt.imread('./data/test_images/2.jpg'), plt.imread('./data/test_images/3.jpg')])
        self.X_train = train_data
        self.y_train = np.array([284, 264, 682, 2])

        val_data = np.array([plt.imread('./data/test_images/0.jpg'), plt.imread('./data/test_images/1.jpg'),
                    plt.imread('./data/test_images/2.jpg'), plt.imread('./data/test_images/3.jpg')])

        self.X_val = val_data
        self.y_val = np.array([284, 264, 682, 2])

        self.train_data_len = self.X_train.shape[0]
        self.val_data_len = self.X_val.shape[0]
        img_height = 224
        img_width = 224
        num_channels = 3
        return img_height, img_width, num_channels, self.train_data_len, self.val_data_len 
開發者ID:MG2033,項目名稱:MobileNet,代碼行數:21,代碼來源:data_loader.py

示例5: load_large_image

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_large_image(img_path):
    """ loading very large images

    .. note:: For the loading we have to use matplotlib while ImageMagic nor other
     lib (opencv, skimage, Pillow) is able to load larger images then 64k or 32k.

    :param str img_path: path to the image
    :return ndarray: image
    """
    assert os.path.isfile(img_path), 'missing image: %s' % img_path
    img = plt.imread(img_path)
    if img.ndim == 3 and img.shape[2] == 4:
        img = cvtColor(img, COLOR_RGBA2RGB)
    if np.max(img) <= 1.5:
        np.clip(img, a_min=0, a_max=1, out=img)
        # this command split should reduce mount of required memory
        np.multiply(img, 255, out=img)
        img = img.astype(np.uint8, copy=False)
    return img 
開發者ID:Borda,項目名稱:BIRL,代碼行數:21,代碼來源:dataset.py

示例6: previous

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def previous(self, event):

        if (self.index>self.checkpoint):
            self.index-=1
        #print (self.img_paths[self.index][:-3]+'txt')
        os.remove(self.img_paths[self.index][:-3]+'txt')

        self.ax.clear()

        self.ax.set_yticklabels([])
        self.ax.set_xticklabels([])

        image = plt.imread(self.img_paths[self.index])
        self.ax.imshow(image, aspect='auto')

        im = Image.open(self.img_paths[self.index])
        width, height = im.size
        im.close()

        self.reset_all()

        self.text+=str(self.index)+'\n'+os.path.abspath(self.img_paths[self.index])+'\n'+str(width)+' '+str(height)+'\n\n' 
開發者ID:hanskrupakar,項目名稱:COCO-Style-Dataset-Generator-GUI,代碼行數:24,代碼來源:segment.py

示例7: clusterClubs

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def clusterClubs(numClust=5):
    datList = []
    for line in open('places.txt').readlines():
        lineArr = line.split('\t')
        datList.append([float(lineArr[4]), float(lineArr[3])])
    datMat = mat(datList)
    myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
    fig = plt.figure()
    rect=[0.1,0.1,0.8,0.8]
    scatterMarkers=['s', 'o', '^', '8', 'p', \
                    'd', 'v', 'h', '>', '<']
    axprops = dict(xticks=[], yticks=[])
    ax0=fig.add_axes(rect, label='ax0', **axprops)
    imgP = plt.imread('Portland.png')
    ax0.imshow(imgP)
    ax1=fig.add_axes(rect, label='ax1', frameon=False)
    for i in range(numClust):
        ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
        markerStyle = scatterMarkers[i % len(scatterMarkers)]
        ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
    ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
    plt.show() 
開發者ID:aimi-cn,項目名稱:AILearners,代碼行數:24,代碼來源:kMeans.py

示例8: test_imsave_color_alpha

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def test_imsave_color_alpha():
    # Test that imsave accept arrays with ndim=3 where the third dimension is
    # color and alpha without raising any exceptions, and that the data is
    # acceptably preserved through a save/read roundtrip.
    from numpy import random
    random.seed(1)
    data = random.rand(256, 128, 4)

    buff = io.BytesIO()
    plt.imsave(buff, data)

    buff.seek(0)
    arr_buf = plt.imread(buff)

    # Recreate the float -> uint8 -> float32 conversion of the data
    data = (255*data).astype('uint8').astype('float32')/255
    # Wherever alpha values were rounded down to 0, the rgb values all get set
    # to 0 during imsave (this is reasonable behaviour).
    # Recreate that here:
    for j in range(3):
        data[data[:, :, 3] == 0, j] = 1

    assert_array_equal(data, arr_buf) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:25,代碼來源:test_image.py

示例9: test_pngsuite

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def test_pngsuite():
    dirname = os.path.join(
        os.path.dirname(__file__),
        'baseline_images',
        'pngsuite')
    files = glob.glob(os.path.join(dirname, 'basn*.png'))
    files.sort()

    fig = plt.figure(figsize=(len(files), 2))

    for i, fname in enumerate(files):
        data = plt.imread(fname)
        cmap = None  # use default colormap
        if data.ndim == 2:
            # keep grayscale images gray
            cmap = cm.gray
        plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)

    plt.gca().patch.set_facecolor("#ddffff")
    plt.gca().set_xlim(0, len(files)) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:22,代碼來源:test_png.py

示例10: test_pngsuite

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def test_pngsuite():
    dirname = os.path.join(
        os.path.dirname(__file__),
        'baseline_images',
        'pngsuite')
    files = sorted(glob.iglob(os.path.join(dirname, 'basn*.png')))

    fig = plt.figure(figsize=(len(files), 2))

    for i, fname in enumerate(files):
        data = plt.imread(fname)
        cmap = None  # use default colormap
        if data.ndim == 2:
            # keep grayscale images gray
            cmap = cm.gray
        plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)

    plt.gca().patch.set_facecolor("#ddffff")
    plt.gca().set_xlim(0, len(files)) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:21,代碼來源:test_png.py

示例11: __init__

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def __init__(self, level='level1', scale=1):
        self.level = level
        if not '.' in level: level += '.bmp'
        self.walls = np.logical_not(plt.imread(os.path.join(os.path.dirname(os.path.realpath(__file__)), level)))
        self.height = self.walls.shape[0]
        self.width = 32
        # observations
        self.screen_shape = (self.height, self.width)
        self.padding = self.width // 2 - 1
        self.padded_walls = np.logical_not(np.pad(np.logical_not(self.walls), ((0, 0), (self.padding, self.padding)), 'constant'))
        self.observation_space = spaces.Box(0, 255, (self.height, self.width, 3), dtype=np.float32)
        # coordinates
        self.scale = scale
        self.coords_shape = (self.height // scale, self.width // scale)
        self.available_coords = np.array(np.where(np.logical_not(self.walls))).transpose()
        # actions
        self.action_space = spaces.Discrete(4)
        # miscellaneous
        self.name = 'GridWorld_obs{}x{}x3_qframes{}x{}x4-v0'.format(*self.screen_shape, *self.coords_shape)
        self.viewer = None
        self.seed() 
開發者ID:fabiopardo,項目名稱:qmap,代碼行數:23,代碼來源:gridworld.py

示例12: load_segmap_as_matrix

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_segmap_as_matrix(
    map_path: str,
    label_resolution: int = VSEG_LABEL_RESOLUTION):
  """
  Loads a .map file and returns a matrix of the label values (uint8 between 0
  and 255).

  Args:
    map_path: path to the .map file to load
    label_resolution: max. number of labels used in the map's encoding,
      must be a power of 2

  Returns:
    A np.ndarray of the semantic segmentation labels.
  """
  png_map = plt.imread(map_path)
  label_bin_size = MAX_LABELS // label_resolution
  lbl_map = np.copy(png_map[:, :, 0]) # slice of first image layer
  lbl_map = lbl_map / label_bin_size
  return lbl_map 
開發者ID:ogroth,項目名稱:shapestacks,代碼行數:22,代碼來源:segmentation_utils.py

示例13: demo2

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def demo2(fun):
    ''' 
        Smiled Monalisa  
    '''
    
    p = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [211, 244], [253, 244], [195, 254], [232, 281], [285, 252]
    ])
    q = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [207, 238], [261, 237], [199, 253], [232, 281], [279, 249]
    ])
    image = plt.imread(os.path.join(sys.path[0], "monalisa.jpg"))
    plt.subplot(121)
    plt.axis('off')
    plt.imshow(image)
    transformed_image = fun(image, p, q, alpha=1, density=1)
    plt.subplot(122)
    plt.axis('off')
    plt.imshow(transformed_image)
    plt.tight_layout(w_pad=1.0, h_pad=1.0)
    plt.show() 
開發者ID:Jarvis73,項目名稱:Moving-Least-Squares,代碼行數:25,代碼來源:img_utils_demo.py

示例14: load_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def load_data(self):
        # This method is an example of loading a dataset. Change it to suit your needs..
        import matplotlib.pyplot as plt
        # For going in the same experiment as the paper. Resizing the input image data to 224x224 is done.
        train_data = np.array([plt.imread('./data/0.jpg')], dtype=np.float32)
        self.X_train = train_data
        self.y_train = np.array([283], dtype=np.int32)

        val_data = np.array([plt.imread('./data/0.jpg')], dtype=np.float32)
        self.X_val = val_data
        self.y_val = np.array([283])

        self.train_data_len = self.X_train.shape[0]
        self.val_data_len = self.X_val.shape[0]
        img_height = 224
        img_width = 224
        num_channels = 3
        return img_height, img_width, num_channels, self.train_data_len, self.val_data_len 
開發者ID:MG2033,項目名稱:ShuffleNet,代碼行數:20,代碼來源:data_loader.py

示例15: test_display_ImageVizArray

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import imread [as 別名]
def test_display_ImageVizArray(display, data):
    """Assert that show calls the mocked display function
    """

    image_path = os.path.join(os.path.dirname(__file__), 'mosaic.png')
    image = imread(image_path)

    coordinates = [
        [-123.40515640309, 32.08296982365502],
        [-115.92938988349292, 32.08296982365502],
        [-115.92938988349292, 38.534294809274336],
        [-123.40515640309, 38.534294809274336]][::-1]

    viz = ImageViz(image, coordinates, access_token=TOKEN)
    viz.show()
    display.assert_called_once() 
開發者ID:mapbox,項目名稱:mapboxgl-jupyter,代碼行數:18,代碼來源:test_html.py


注:本文中的matplotlib.pyplot.imread方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。