本文整理匯總了Python中matplotlib.pyplot.grid方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.grid方法的具體用法?Python pyplot.grid怎麽用?Python pyplot.grid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.grid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __plot_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def __plot_curve(self, name, val, ylim, suffix=''):
x = val['learning_curve']['x']
y_train = val['learning_curve']['y_train']
y_cv = val['learning_curve']['y_cv']
plt.plot(x, y_train, 'o-', color='dodgerblue',
label='Training score')
plt.plot(x, y_cv, 'o-', color='darkorange',
label='Cross-validation score')
plt.title(name)
plt.xlabel('Training examples')
plt.ylabel('Score')
plt.grid(True)
plt.ylim(ylim)
plt.legend(loc="lower right")
fname = self.params.out_dir + '/Learning curve_' + name
if suffix != '':
fname += '_' + suffix
fname += '.png'
plt.savefig(fname, bbox_inches='tight')
plt.close()
示例2: plot_roc_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: figures
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def figures(ext, show):
for name, df in TablesRecorder.generate_dataframes('thames_output.h5'):
df.columns = ['Very low', 'Low', 'Central', 'High', 'Very high']
fig, (ax1, ax2) = plt.subplots(figsize=(12, 4), ncols=2, sharey='row',
gridspec_kw={'width_ratios': [3, 1]})
df['2100':'2125'].plot(ax=ax1)
df.quantile(np.linspace(0, 1)).plot(ax=ax2)
if name.startswith('reservoir'):
ax1.set_ylabel('Volume [$Mm^3$]')
else:
ax1.set_ylabel('Flow [$Mm^3/day$]')
for ax in (ax1, ax2):
ax.set_title(name)
ax.grid(True)
plt.tight_layout()
if ext is not None:
fig.savefig(f'{name}.{ext}', dpi=300)
if show:
plt.show()
示例4: make_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def make_plot(files, labels):
plt.figure()
for file_idx in range(len(files)):
rot_err, trans_err = read_csv(files[file_idx])
success_dict = count_success(trans_err)
x_range = success_dict.keys()
x_range.sort()
success = []
for i in x_range:
success.append(success_dict[i])
success = np.array(success)/total_cases
plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
# plt.scatter(x_range, success, s=50)
plt.ylabel('Success Ratio', fontsize=40)
plt.xlabel('Threshold for Translation Error', fontsize=40)
plt.tick_params(labelsize=40, width=3, length=10)
plt.grid(True)
plt.ylim(0,1.005)
plt.yticks(np.arange(0,1.2,0.2))
plt.xticks(np.arange(0,2.1,0.2))
plt.xlim(0,2)
plt.legend(fontsize=30, loc=4)
示例5: test
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def test(self):
list_ = os.listdir("./maps/val/")
nums_file = list_.__len__()
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
saver.restore(self.sess, "./save_para/model.ckpt")
rand_select = np.random.randint(0, nums_file)
INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3])
INPUTS = np.zeros([1, self.img_h, self.img_w, 3])
img = np.array(Image.open(self.path + list_[rand_select]))
img_h, img_w = img.shape[0], img.shape[1]
INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0
INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0
[fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION})
out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1)
Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg")
plt.imshow(np.uint8((out_img + 1.0)*127.5))
plt.grid("off")
plt.axis("off")
plt.show()
示例6: db_magnitude_distance_by_trt
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def db_magnitude_distance_by_trt(db1, dist_type,
figure_size=(7, 5), filename=None, filetype="png", dpi=300):
"""
Plot magnitude-distance comparison by tectonic region
"""
trts=[]
for i in db1.records:
trts.append(i.event.tectonic_region)
trt_types=list(set(trts))
selector = SMRecordSelector(db1)
plt.figure(figsize=figure_size)
for trt in trt_types:
subdb = selector.select_trt_type(trt, as_db=True)
mag, dists = get_magnitude_distances(subdb, dist_type)
plt.semilogx(dists, mag, "o", mec='k', mew=0.5, label=trt)
plt.xlabel(DISTANCE_LABEL[dist_type], fontsize=14)
plt.ylabel("Magnitude", fontsize=14)
plt.title("Magnitude vs Distance by Tectonic Region", fontsize=18)
plt.legend(loc='lower right', numpoints=1)
plt.grid()
_save_image(filename, filetype, dpi)
plt.show()
示例7: add_algorithm
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def add_algorithm(self, estimator, param_grid, name, link=None):
"""
Add arbitrary scikit-learn-compatible algorithm.
Parameters
----------
estimator : object type that implements the “fit” and “predict” methods
A object of that type is instantiated for each grid point.
param_grid : dict or list of dictionaries
Dictionary with parameters names (string) as keys and
lists of parameter settings to try as values, or a list of
such dictionaries, in which case the grids spanned by
each dictionary in the list are explored.
This enables searching over any sequence of parameter settings.
name : string
Algorithm name (used for report)
link : string
URL to explain the algorithm (used for report)
"""
if self.verbose:
print('add %s' % name)
self.algorithms.append(Algorithm(estimator, param_grid, name, link))
示例8: plot_psnr
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_psnr(self, epoch):
axis = np.linspace(1, epoch, epoch)
for idx_data, d in enumerate(self.args.data_test):
label = 'SR on {}'.format(d)
fig = plt.figure()
plt.title(label)
for idx_scale, scale in enumerate(self.args.scale):
plt.plot(
axis,
self.log[:, idx_data, idx_scale].numpy(),
label='Scale {}'.format(scale)
)
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('PSNR')
plt.grid(True)
plt.savefig(self.get_path('test_{}.pdf'.format(d)))
plt.close(fig)
示例9: _initialisePlot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def _initialisePlot(self):
plt.rc('grid', linestyle=":", color='black')
plt.rcParams['axes.facecolor'] = 'black'
plt.rcParams['axes.edgecolor'] = 'white'
plt.rcParams['grid.alpha'] = 1
plt.rcParams['grid.color'] = "green"
plt.grid(True)
plt.xlim(self.PLOTXMIN, self.PLOTXMAX)
plt.ylim(self.PLOTYMIN, self.PLOTYMAX)
self.graph, = plt.plot([], [], 'o')
return
示例10: __init__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def __init__(self, title, varieties, width, height,
anim=True, data_func=None, is_headless=False, legend_pos=4):
"""
Setup a scatter plot.
varieties contains the different types of
entities to show in the plot, which
will get assigned different colors
"""
global anim_func
self.scats = None
self.anim = anim
self.data_func = data_func
self.s = ceil(4096 / width)
self.headless = is_headless
fig, ax = plt.subplots()
ax.set_xlim(0, width)
ax.set_ylim(0, height)
self.create_scats(varieties)
ax.legend(loc = legend_pos)
ax.set_title(title)
plt.grid(True)
if anim and not self.headless:
anim_func = animation.FuncAnimation(fig,
self.update_plot,
frames=1000,
interval=500,
blit=False)
示例11: draw_adjacency_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def draw_adjacency_graph(adjacency_matrix,
node_color=None,
size=10,
layout='graphviz',
prog='neato',
node_size=80,
colormap='autumn'):
"""draw_adjacency_graph."""
graph = nx.from_scipy_sparse_matrix(adjacency_matrix)
plt.figure(figsize=(size, size))
plt.grid(False)
plt.axis('off')
if layout == 'graphviz':
pos = nx.graphviz_layout(graph, prog=prog)
else:
pos = nx.spring_layout(graph)
if len(node_color) == 0:
node_color = 'gray'
nx.draw_networkx_nodes(graph, pos,
node_color=node_color,
alpha=0.6,
node_size=node_size,
cmap=plt.get_cmap(colormap))
nx.draw_networkx_edges(graph, pos, alpha=0.5)
plt.show()
# draw a whole set of graphs::
示例12: plot_precision_recall_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_precision_recall_curve(y_true, y_score, size=None):
"""plot_precision_recall_curve."""
precision, recall, thresholds = precision_recall_curve(y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(recall, precision, lw=2, color='navy')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
y_true, y_score)))
示例13: show_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def show_graph(g, vertex_color='typeof', size=15, vertex_label=None):
"""show_graph."""
degrees = [len(g.neighbors(u)) for u in g.nodes()]
print(('num nodes=%d' % len(g)))
print(('num edges=%d' % len(g.edges())))
print(('num non edges=%d' % len(list(nx.non_edges(g)))))
print(('max degree=%d' % max(degrees)))
print(('median degree=%d' % np.percentile(degrees, 50)))
draw_graph(g, size=size,
vertex_color=vertex_color, vertex_label=vertex_label,
vertex_size=200, edge_label=None)
# display degree distribution
size = int((max(degrees) - min(degrees)) / 1.5)
plt.figure(figsize=(size, 3))
plt.title('Degree distribution')
_bins = np.arange(min(degrees), max(degrees) + 2) - .5
n, bins, patches = plt.hist(degrees, _bins,
alpha=0.3,
facecolor='navy', histtype='bar',
rwidth=0.8, edgecolor='k')
labels = np.array([str(int(i)) for i in n])
for xi, yi, label in zip(bins, n, labels):
plt.text(xi + 0.5, yi, label, ha='center', va='bottom')
plt.xticks(bins + 0.5)
plt.xlim((min(degrees) - 1, max(degrees) + 1))
plt.ylim((0, max(n) * 1.1))
plt.xlabel('Node degree')
plt.ylabel('Counts')
plt.grid(linestyle=":")
plt.show()
示例14: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot(self, names=None):
names = self.names if names == None else names
numbers = self.numbers
for _, name in enumerate(names):
x = np.arange(len(numbers[name]))
plt.plot(x, np.asarray(numbers[name]))
plt.legend([self.title + '(' + name + ')' for name in names])
plt.grid(True)
示例15: place_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def place_plot(self, axis) -> None:
self._axis = axis
for n, v in self._prev_values.items():
self._axis.scatter(v[1], v[0], label=n, c=self._colors[n])
self._axis.set_ylabel(self._handle)
self._axis.set_xlabel('epoch')
self._axis.xaxis.set_major_locator(MaxNLocator(integer=True))
self._axis.legend()
plt.grid()