當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.grid方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.grid方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.grid方法的具體用法?Python pyplot.grid怎麽用?Python pyplot.grid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.grid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __plot_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def __plot_curve(self, name, val, ylim, suffix=''):
        x = val['learning_curve']['x']
        y_train = val['learning_curve']['y_train']
        y_cv = val['learning_curve']['y_cv']

        plt.plot(x, y_train, 'o-', color='dodgerblue',
                 label='Training score')
        plt.plot(x, y_cv, 'o-', color='darkorange',
                 label='Cross-validation score')
        plt.title(name)
        plt.xlabel('Training examples')
        plt.ylabel('Score')
        plt.grid(True)
        plt.ylim(ylim)
        plt.legend(loc="lower right")
        fname = self.params.out_dir + '/Learning curve_' + name
        if suffix != '':
            fname += '_' + suffix
        fname += '.png'
        plt.savefig(fname, bbox_inches='tight')
        plt.close() 
開發者ID:canard0328,項目名稱:malss,代碼行數:23,代碼來源:prediction.py

示例2: plot_roc_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:18,代碼來源:__init__.py

示例3: figures

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def figures(ext, show):

    for name, df in TablesRecorder.generate_dataframes('thames_output.h5'):
        df.columns = ['Very low', 'Low', 'Central', 'High', 'Very high']

        fig, (ax1, ax2) = plt.subplots(figsize=(12, 4), ncols=2, sharey='row',
                                       gridspec_kw={'width_ratios': [3, 1]})
        df['2100':'2125'].plot(ax=ax1)
        df.quantile(np.linspace(0, 1)).plot(ax=ax2)

        if name.startswith('reservoir'):
            ax1.set_ylabel('Volume [$Mm^3$]')
        else:
            ax1.set_ylabel('Flow [$Mm^3/day$]')

        for ax in (ax1, ax2):
            ax.set_title(name)
            ax.grid(True)
        plt.tight_layout()

        if ext is not None:
            fig.savefig(f'{name}.{ext}', dpi=300)

    if show:
        plt.show() 
開發者ID:pywr,項目名稱:pywr,代碼行數:27,代碼來源:thames.py

示例4: make_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def make_plot(files, labels):
	plt.figure()
	for file_idx in range(len(files)):
		rot_err, trans_err = read_csv(files[file_idx])
		success_dict = count_success(trans_err)

		x_range = success_dict.keys()
		x_range.sort()
		success = []
		for i in x_range:
			success.append(success_dict[i])
		success = np.array(success)/total_cases

		plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
		# plt.scatter(x_range, success, s=50)
	plt.ylabel('Success Ratio', fontsize=40)
	plt.xlabel('Threshold for Translation Error', fontsize=40)
	plt.tick_params(labelsize=40, width=3, length=10)
	plt.grid(True)
	plt.ylim(0,1.005)
	plt.yticks(np.arange(0,1.2,0.2))
	plt.xticks(np.arange(0,2.1,0.2))
	plt.xlim(0,2)
	plt.legend(fontsize=30, loc=4) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:26,代碼來源:plot_threshold_vs_success_trans.py

示例5: test

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def test(self):

        list_ = os.listdir("./maps/val/")
        nums_file = list_.__len__()
        saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
        saver.restore(self.sess, "./save_para/model.ckpt")
        rand_select = np.random.randint(0, nums_file)
        INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3])
        INPUTS = np.zeros([1, self.img_h, self.img_w, 3])
        img = np.array(Image.open(self.path + list_[rand_select]))
        img_h, img_w = img.shape[0], img.shape[1]
        INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0
        INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0
        [fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION})
        out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1)
        Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg")
        plt.imshow(np.uint8((out_img + 1.0)*127.5))
        plt.grid("off")
        plt.axis("off")
        plt.show() 
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:22,代碼來源:test.py

示例6: db_magnitude_distance_by_trt

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def db_magnitude_distance_by_trt(db1, dist_type,
        figure_size=(7, 5), filename=None, filetype="png", dpi=300):
    """
    Plot magnitude-distance comparison by tectonic region
    """
    trts=[]
    for i in db1.records:
        trts.append(i.event.tectonic_region)
    trt_types=list(set(trts))
    selector = SMRecordSelector(db1)
    plt.figure(figsize=figure_size)
    for trt in trt_types:
        subdb = selector.select_trt_type(trt, as_db=True)
        mag, dists = get_magnitude_distances(subdb, dist_type)
        plt.semilogx(dists, mag, "o", mec='k', mew=0.5, label=trt)
    plt.xlabel(DISTANCE_LABEL[dist_type], fontsize=14)
    plt.ylabel("Magnitude", fontsize=14)
    plt.title("Magnitude vs Distance by Tectonic Region", fontsize=18)
    plt.legend(loc='lower right', numpoints=1)
    plt.grid()
    _save_image(filename, filetype, dpi)
    plt.show() 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:24,代碼來源:database_visualiser.py

示例7: add_algorithm

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def add_algorithm(self, estimator, param_grid, name, link=None):
        """
        Add arbitrary scikit-learn-compatible algorithm.

        Parameters
        ----------
        estimator : object type that implements the “fit” and “predict” methods
            A object of that type is instantiated for each grid point.
        param_grid : dict or list of dictionaries
            Dictionary with parameters names (string) as keys and
            lists of parameter settings to try as values, or a list of
            such dictionaries, in which case the grids spanned by
            each dictionary in the list are explored.
            This enables searching over any sequence of parameter settings.
        name : string
            Algorithm name (used for report)
        link : string
            URL to explain the algorithm (used for report)
        """
        if self.verbose:
            print('add %s' % name)
        self.algorithms.append(Algorithm(estimator, param_grid, name, link)) 
開發者ID:canard0328,項目名稱:malss,代碼行數:24,代碼來源:malss.py

示例8: plot_psnr

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_psnr(self, epoch):
        axis = np.linspace(1, epoch, epoch)
        for idx_data, d in enumerate(self.args.data_test):
            label = 'SR on {}'.format(d)
            fig = plt.figure()
            plt.title(label)
            for idx_scale, scale in enumerate(self.args.scale):
                plt.plot(
                    axis,
                    self.log[:, idx_data, idx_scale].numpy(),
                    label='Scale {}'.format(scale)
                )
            plt.legend()
            plt.xlabel('Epochs')
            plt.ylabel('PSNR')
            plt.grid(True)
            plt.savefig(self.get_path('test_{}.pdf'.format(d)))
            plt.close(fig) 
開發者ID:HolmesShuan,項目名稱:OISR-PyTorch,代碼行數:20,代碼來源:utility.py

示例9: _initialisePlot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def _initialisePlot(self):

        plt.rc('grid', linestyle=":", color='black')
        plt.rcParams['axes.facecolor'] = 'black'
        plt.rcParams['axes.edgecolor'] = 'white'
        plt.rcParams['grid.alpha'] = 1
        plt.rcParams['grid.color'] = "green"
        plt.grid(True)
        plt.xlim(self.PLOTXMIN, self.PLOTXMAX)
        plt.ylim(self.PLOTYMIN, self.PLOTYMAX)
        self.graph, = plt.plot([], [], 'o')

        return 
開發者ID:maverickjoy,項目名稱:pepper-robot-programming,代碼行數:15,代碼來源:asthama_search.py

示例10: __init__

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def __init__(self, title, varieties, width, height,
                 anim=True, data_func=None, is_headless=False, legend_pos=4):
        """
        Setup a scatter plot.
        varieties contains the different types of
        entities to show in the plot, which
        will get assigned different colors
        """
        global anim_func

        self.scats = None
        self.anim = anim
        self.data_func = data_func
        self.s = ceil(4096 / width)
        self.headless = is_headless

        fig, ax = plt.subplots()
        ax.set_xlim(0, width)
        ax.set_ylim(0, height)
        self.create_scats(varieties)
        ax.legend(loc = legend_pos)
        ax.set_title(title)
        plt.grid(True)

        if anim and not self.headless:
            anim_func = animation.FuncAnimation(fig,
                                    self.update_plot,
                                    frames=1000,
                                    interval=500,
                                    blit=False) 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:32,代碼來源:display_methods.py

示例11: draw_adjacency_graph

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def draw_adjacency_graph(adjacency_matrix,
                         node_color=None,
                         size=10,
                         layout='graphviz',
                         prog='neato',
                         node_size=80,
                         colormap='autumn'):
    """draw_adjacency_graph."""
    graph = nx.from_scipy_sparse_matrix(adjacency_matrix)

    plt.figure(figsize=(size, size))
    plt.grid(False)
    plt.axis('off')

    if layout == 'graphviz':
        pos = nx.graphviz_layout(graph, prog=prog)
    else:
        pos = nx.spring_layout(graph)

    if len(node_color) == 0:
        node_color = 'gray'
    nx.draw_networkx_nodes(graph, pos,
                           node_color=node_color,
                           alpha=0.6,
                           node_size=node_size,
                           cmap=plt.get_cmap(colormap))
    nx.draw_networkx_edges(graph, pos, alpha=0.5)
    plt.show()


# draw a whole set of graphs:: 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:33,代碼來源:__init__.py

示例12: plot_precision_recall_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot_precision_recall_curve(y_true, y_score, size=None):
    """plot_precision_recall_curve."""
    precision, recall, thresholds = precision_recall_curve(y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(recall, precision, lw=2, color='navy')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
        y_true, y_score))) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:16,代碼來源:__init__.py

示例13: show_graph

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def show_graph(g, vertex_color='typeof', size=15, vertex_label=None):
    """show_graph."""
    degrees = [len(g.neighbors(u)) for u in g.nodes()]

    print(('num nodes=%d' % len(g)))
    print(('num edges=%d' % len(g.edges())))
    print(('num non edges=%d' % len(list(nx.non_edges(g)))))
    print(('max degree=%d' % max(degrees)))
    print(('median degree=%d' % np.percentile(degrees, 50)))

    draw_graph(g, size=size,
               vertex_color=vertex_color, vertex_label=vertex_label,
               vertex_size=200, edge_label=None)

    # display degree distribution
    size = int((max(degrees) - min(degrees)) / 1.5)
    plt.figure(figsize=(size, 3))
    plt.title('Degree distribution')
    _bins = np.arange(min(degrees), max(degrees) + 2) - .5
    n, bins, patches = plt.hist(degrees, _bins,
                                alpha=0.3,
                                facecolor='navy', histtype='bar',
                                rwidth=0.8, edgecolor='k')
    labels = np.array([str(int(i)) for i in n])
    for xi, yi, label in zip(bins, n, labels):
        plt.text(xi + 0.5, yi, label, ha='center', va='bottom')

    plt.xticks(bins + 0.5)
    plt.xlim((min(degrees) - 1, max(degrees) + 1))
    plt.ylim((0, max(n) * 1.1))
    plt.xlabel('Node degree')
    plt.ylabel('Counts')
    plt.grid(linestyle=":")
    plt.show() 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:36,代碼來源:link_prediction_utils.py

示例14: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def plot(self, names=None):   
        names = self.names if names == None else names
        numbers = self.numbers
        for _, name in enumerate(names):
            x = np.arange(len(numbers[name]))
            plt.plot(x, np.asarray(numbers[name]))
        plt.legend([self.title + '(' + name + ')' for name in names])
        plt.grid(True) 
開發者ID:zhunzhong07,項目名稱:Random-Erasing,代碼行數:10,代碼來源:logger.py

示例15: place_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import grid [as 別名]
def place_plot(self, axis) -> None:
            self._axis = axis

            for n, v in self._prev_values.items():
                self._axis.scatter(v[1], v[0], label=n, c=self._colors[n])

            self._axis.set_ylabel(self._handle)
            self._axis.set_xlabel('epoch')
            self._axis.xaxis.set_major_locator(MaxNLocator(integer=True))
            self._axis.legend()
            plt.grid() 
開發者ID:toodef,項目名稱:neural-pipeline,代碼行數:13,代碼來源:mpl.py


注:本文中的matplotlib.pyplot.grid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。