當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.get_cmap方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.get_cmap方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.get_cmap方法的具體用法?Python pyplot.get_cmap怎麽用?Python pyplot.get_cmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.get_cmap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_heatmap

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def draw_heatmap(img, heatmap, alpha=0.5):
    """Draw a heatmap overlay over an image."""
    assert len(heatmap.shape) == 2 or \
        (len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(
            heatmap_rs[..., np.newaxis],
            img.shape[0:2],
            interpolation="nearest"
        )
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:25,代碼來源:common.py

示例2: showImgAtt

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def showImgAtt(img, instance, step, ax):
    dx, dy = 0.05, 0.05
    x = np.arange(-1.5, 1.5, dx)
    y = np.arange(-1.0, 1.0, dy)
    X, Y = np.meshgrid(x, y)
    extent = np.min(x), np.max(x), np.min(y), np.max(y)

    ax.cla()

    img1 = ax.imshow(img, interpolation = "nearest", extent = extent)
    ax.imshow(np.array(instance["attentions"]["kb"][step]).reshape(imageDims), cmap = plt.get_cmap(args.cmap), 
        interpolation = "bicubic", extent = extent)

    ax.set_axis_off()
    plt.axis("off")

    ax.set_aspect("auto") 
開發者ID:stanfordnlp,項目名稱:mac-network,代碼行數:19,代碼來源:visualization.py

示例3: plot_alerts

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def plot_alerts(_g, _bank_accts, _output_png):
    bank_ids = _bank_accts.keys()
    cmap = plt.get_cmap("tab10")
    pos = nx.nx_agraph.graphviz_layout(_g)

    plt.figure(figsize=(12.0, 8.0))
    plt.axis('off')

    for i, bank_id in enumerate(bank_ids):
        color = cmap(i)
        members = _bank_accts[bank_id]
        nx.draw_networkx_nodes(_g, pos, members, node_size=300, node_color=color, label=bank_id)
        nx.draw_networkx_labels(_g, pos, {n: n for n in members}, font_size=10)

    edge_labels = nx.get_edge_attributes(_g, "label")
    nx.draw_networkx_edges(_g, pos)
    nx.draw_networkx_edge_labels(_g, pos, edge_labels, font_size=6)

    plt.legend(numpoints=1)
    plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
    plt.savefig(_output_png, dpi=120) 
開發者ID:IBM,項目名稱:AMLSim,代碼行數:23,代碼來源:plot_alert_pattern_subgraphs.py

示例4: plotresult

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def plotresult(org_vec,noisy_vec,out_vec):
    plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Original Image")
    plt.colorbar()

    plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
    plt.title("Input Image")
    plt.colorbar()
    
    outimg = np.reshape(out_vec, (28, 28))
    plt.matshow(outimg, cmap=plt.get_cmap('gray'))
    plt.title("Reconstructed Image")
    plt.colorbar()
    plt.show()

# NETOWRK PARAMETERS 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:18,代碼來源:denoising_autoencoder.py

示例5: plot_2Dpose

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def plot_2Dpose(ax, pose_2d, bones, bones_dashed=[], bones_dashdot=[], colormap='hsv', 
                linewidth=1, limits=None, color_order=[0, 5, 9, 15, 2, 10, 12, 4, 14, 13, 11, 3, 7, 8, 6, 1]):
    cmap = plt.get_cmap(colormap)

    plt.axis('equal')
    maximum = max(color_order) #len(bones)
    for i, bone in enumerate(bones):
        colorIndex = (color_order[i] * cmap.N / float(maximum))
#        color = cmap(int(colorIndex))
#        colorIndex = i / len(bones)
        color = cmap(int(colorIndex))
        ax.plot(pose_2d[0, bone], pose_2d[1, bone], '-', color=color, linewidth=linewidth)
    for bone in bones_dashed:
        ax.plot(pose_2d[0, bone], pose_2d[1, bone], ':', color=color, linewidth=linewidth)
    for bone in bones_dashdot:
        ax.plot(pose_2d[0, bone], pose_2d[1, bone], '--', color=color, linewidth=linewidth)

    if not limits==None:
        ax.set_xlim(limits[0],limits[2])
        ax.set_ylim(limits[1],limits[3]) 
開發者ID:hrhodin,項目名稱:UnsupervisedGeometryAwareRepresentationLearning,代碼行數:22,代碼來源:plotting.py

示例6: plot2d_all

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def plot2d_all(trajectories, tracks):
    """
    Plot all tracks on a single 2d slice
    :param trajectories: dictionary output of the Alyx REST query on trajectories
    :param tracks:
    :return:
    """
    plt.figure()
    axs = brat.plot_sslice(brat.bc.i2x(190) * 1e3, cmap=plt.get_cmap('bone'))
    plt.figure()
    axc = brat.plot_cslice(brat.bc.i2y(350) * 1e3)
    for xyz in tracks['xyz']:
        axc.plot(xyz[:, 0] * 1e3, xyz[:, 2] * 1e3, 'b')
        axs.plot(xyz[:, 1] * 1e3, xyz[:, 2] * 1e3, 'b')
    for trj in trajectories:
        ins = atlas.Insertion.from_dict(trj, brain_atlas=brat)
        xyz = ins.xyz
        axc.plot(xyz[:, 0] * 1e3, xyz[:, 2] * 1e3, 'r')
        axs.plot(xyz[:, 1] * 1e3, xyz[:, 2] * 1e3, 'r') 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:21,代碼來源:histology.py

示例7: tryPlot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def tryPlot():
    cmap = plt.get_cmap('jet_r')
    fig = plt.figure()
    ax = Axes3D(fig)
    draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
               8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
    draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
               -0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
    draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
               -0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
    draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
               0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
    draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
               0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
    draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
               -0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
    draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
               -0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
    plt.show() 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:21,代碼來源:draw3dobb.py

示例8: showGenshapes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def showGenshapes(genshapes):
    for i in range(len(genshapes)):
        recover_boxes = genshapes[i]

        fig = plt.figure(i)
        cmap = plt.get_cmap('jet_r')
        ax = Axes3D(fig)
        ax.set_xlim(-0.7, 0.7)
        ax.set_ylim(-0.7, 0.7)
        ax.set_zlim(-0.7, 0.7)

        for jj in range(len(recover_boxes)):
            p = recover_boxes[jj][:]
            draw(ax, p, cmap(float(jj)/len(recover_boxes)))

        plt.show() 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:18,代碼來源:draw3dobb.py

示例9: tryPlot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def tryPlot():
    cmap = plt.get_cmap(u'jet_r')
    fig = plt.figure()
    ax = Axes3D(fig)
    draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
               8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
    draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
               -0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
    draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
               -0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
    draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
               0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
    draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
               0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
    draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
               -0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
    draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
               -0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
    plt.show() 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:21,代碼來源:draw3dobb.py

示例10: showGenshapes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def showGenshapes(genshapes):
    for i in xrange(len(genshapes)):
        recover_boxes = genshapes[i]

        fig = plt.figure(i)
        cmap = plt.get_cmap(u'jet_r')
        ax = Axes3D(fig)
        ax.set_xlim(-0.7, 0.7)
        ax.set_ylim(-0.7, 0.7)
        ax.set_zlim(-0.7, 0.7)

        for jj in xrange(len(recover_boxes)):
            p = recover_boxes[jj][:]
            draw(ax, p, cmap(float(jj)/len(recover_boxes)))

        plt.show() 
開發者ID:kevin-kaixu,項目名稱:grass_pytorch,代碼行數:18,代碼來源:draw3dobb.py

示例11: list_of_hex_colours

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def list_of_hex_colours(N, base_cmap):
    """
    Return a list of colors from a colourmap as hex codes

        Arguments:
            cmap: colormap instance, eg. cm.jet.
            N: number of colors.

        Author: FJC
    """
    cmap = _cm.get_cmap(base_cmap, N)

    hex_codes = []
    for i in range(cmap.N):
        rgb = cmap(i)[:3] # will return rgba, we take only first 3 so we get rgb
        hex_codes.append(_mcolors.rgb2hex(rgb))
    return hex_codes 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:19,代碼來源:colours.py

示例12: cmap_discretize

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def cmap_discretize(N, cmap):
    """Return a discrete colormap from the continuous colormap cmap.

    Arguments:
        cmap: colormap instance, eg. cm.jet.
        N: number of colors.

    Example:
        x = resize(arange(100), (5,100))
        djet = cmap_discretize(cm.jet, 5)
        imshow(x, cmap=djet)
    """

    if type(cmap) == str:
        cmap = _plt.get_cmap(cmap)
    colors_i = _np.concatenate((_np.linspace(0, 1., N), (0.,0.,0.,0.)))
    colors_rgba = cmap(colors_i)
    indices = _np.linspace(0, 1., N+1)
    cdict = {}
    for ki,key in enumerate(('red','green','blue')):
        cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
                       for i in range(N+1) ]
    # Return colormap object.
    return _mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:26,代碼來源:colours.py

示例13: __init__

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def __init__(self, cmap, levels):

        if isinstance(cmap, str):
            self.cmap = _cm.get_cmap(cmap)
        elif isinstance(cmap, _mcolors.Colormap):
            self.cmap = cmap
        else:
            raise ValueError('Colourmap must either be a string name of a colormap, \
                         or a Colormap object (class instance). Please try again.' \
                         "Colourmap supplied is of type: ", type(cmap))

        self.N = self.cmap.N
        self.monochrome = self.cmap.monochrome
        self.levels = _np.asarray(levels)#, dtype='float64')
        self._x = self.levels
        self.levmax = self.levels.max()
        self.levmin = self.levels.min()
        self.transformed_levels = _np.linspace(self.levmin, self.levmax,
             len(self.levels)) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:21,代碼來源:colours.py

示例14: make_coherence_cmap

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def make_coherence_cmap(
    mapname="inferno", vmin=1e-5, vmax=1, ncolors=64, outname="coherence-cog.cpt"
):
    """Write default colormap (coherence-cog.cpt) for isce coherence images.

    Parameters
    ----------
    mapname : str
        matplotlib colormap name
    vmin : float
        data value mapped to lower end of colormap
    vmax : float
        data value mapped to upper end of colormap
    ncolors : int
        number of discrete mapped values between vmin and vmax

    """
    cmap = plt.get_cmap(mapname)
    cNorm = colors.Normalize(vmin=vmin, vmax=vmax)
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)
    vals = np.linspace(vmin, vmax, ncolors, endpoint=True)

    write_cmap(outname, vals, scalarMap)

    return outname 
開發者ID:scottyhq,項目名稱:dinosar,代碼行數:27,代碼來源:__init__.py

示例15: show_animation

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import get_cmap [as 別名]
def show_animation():
    w = 1 << 9
    h = 1 << 9
    # w = 1920
    # h = 1080
    sl = SmoothLife(h, w)
    sl.add_speckles()
    sl.step()

    fig = plt.figure()
    # Nice color maps: viridis, plasma, gray, binary, seismic, gnuplot
    im = plt.imshow(sl.field, animated=True,
                    cmap=plt.get_cmap("viridis"), aspect="equal")

    def animate(*args):
        im.set_array(sl.step())
        return (im, )

    ani = animation.FuncAnimation(fig, animate, interval=60, blit=True)
    plt.show() 
開發者ID:duckythescientist,項目名稱:SmoothLife,代碼行數:22,代碼來源:smoothlife.py


注:本文中的matplotlib.pyplot.get_cmap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。