當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.gca方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.gca方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.gca方法的具體用法?Python pyplot.gca怎麽用?Python pyplot.gca使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.gca方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_confusion_matrix

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
    """plot_confusion_matrix."""
    cm = confusion_matrix(y_true, y_pred)
    fmt = "%d"
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        fmt = "%.2f"
    xticklabels = list(sorted(set(y_pred)))
    yticklabels = list(sorted(set(y_true)))
    if size is not None:
        plt.figure(figsize=(size, size))
    heatmap(cm, xlabel='Predicted label', ylabel='True label',
            xticklabels=xticklabels, yticklabels=yticklabels,
            cmap=plt.cm.Blues, fmt=fmt)
    if normalize:
        plt.title("Confusion matrix (norm.)")
    else:
        plt.title("Confusion matrix")
    plt.gca().invert_yaxis() 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:21,代碼來源:__init__.py

示例2: plot_QQ

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_QQ(A, B, ax=None):
    if ax is None:
        ax = plt.gca()
    ax.scatter(B.values, A.values, color=c["Cfill"], edgecolor=c["Cedge"], clip_on=False)
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    limit = max(xlim[1], ylim[0])
    ax.plot([0, limit], [0, limit], '-k')
    ax.set_xlim(0, limit)
    ax.set_ylim(0, limit)
    ax.grid(True)
    set_000formatter(ax.get_xaxis())
    set_000formatter(ax.get_yaxis())
    ax.set_xlabel(B.name)
    ax.set_ylabel(A.name)
    ax.legend(["Equality"], loc="best")
    return ax 
開發者ID:pywr,項目名稱:pywr,代碼行數:19,代碼來源:figures.py

示例3: plot_percentiles

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_percentiles(A, B, ax=None):
    if ax is None:
        ax = plt.gca()
    percentiles = np.linspace(0.001, 0.999, 1000) * 100
    A_pct = scipy.stats.scoreatpercentile(A.values, percentiles)
    B_pct = scipy.stats.scoreatpercentile(B.values, percentiles)
    percentiles = percentiles / 100.0
    ax.plot(percentiles, B_pct[::-1], color=c["Bfill"], clip_on=False, linewidth=2)
    ax.plot(percentiles, A_pct[::-1], color=c["Afill"], clip_on=False, linewidth=2)
    ax.set_xlabel("Cumulative frequency")
    ax.grid(True)
    ax.xaxis.grid(True, which="both")
    set_000formatter(ax.get_yaxis())
    ax.set_xscale("logit")
    xticks = ax.get_xticks()
    xticks_minr = ax.get_xticks(minor=True)
    ax.set_xticklabels([], minor=True)
    ax.set_xticks([0.01, 0.1, 0.5, 0.9, 0.99])
    ax.set_xticklabels(["1", "10", "50", "90", "99"])
    ax.set_xlim(0.001, 0.999)
    ax.legend([B.name, A.name], loc="best")
    return ax 
開發者ID:pywr,項目名稱:pywr,代碼行數:24,代碼來源:figures.py

示例4: newline

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def newline(p1, p2, color=None, marker=None):
    """
    https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib
    :param p1:
    :param p2:
    :return:
    """
    ax = plt.gca()
    xmin, xmax = ax.get_xbound()

    if (p2[0] == p1[0]):
        xmin = xmax = p1[0]
        ymin, ymax = ax.get_ybound()
    else:
        ymax = p1[1] + (p2[1] - p1[1]) / (p2[0] - p1[0]) * (xmax - p1[0])
        ymin = p1[1] + (p2[1] - p1[1]) / (p2[0] - p1[0]) * (xmin - p1[0])

    l = mlines.Line2D([xmin, xmax], [ymin, ymax], color=color, marker=marker)
    ax.add_line(l)
    return l 
開發者ID:hankcs,項目名稱:pyhanlp,代碼行數:22,代碼來源:plot_name.py

示例5: set_frame

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def set_frame(frame):
    # convert 3x6 world_frame matrix into three line_data objects which is 3x2 (row:point index, column:x,y,z)
    lines_data = [frame[:,[0,2]], frame[:,[1,3]], frame[:,[4,5]]]
    ax = plt.gca()
    lines = ax.get_lines()
    for line, line_data in zip(lines[:3], lines_data):
        x, y, z = line_data
        line.set_data(x, y)
        line.set_3d_properties(z)

    global history, count
    # plot history trajectory
    history[count] = frame[:,4]
    if count < np.size(history, 0) - 1:
        count += 1
    zline = history[:count,-1]
    xline = history[:count,0]
    yline = history[:count,1]
    lines[-1].set_data(xline, yline)
    lines[-1].set_3d_properties(zline)
    # ax.plot3D(xline, yline, zline, 'blue') 
開發者ID:hbd730,項目名稱:quadcopter-simulation,代碼行數:23,代碼來源:quadPlot.py

示例6: plot_ball_trajectory

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_ball_trajectory(var, filename, idx=0, scale=30, cmap='Blues'):
    # Calc optimal radius of ball
    x_min, y_min = np.min(var[:, :, :2], axis=(0, 1))
    x_max, y_max = np.max(var[:, :, :2], axis=(0, 1))
    r = max((x_max - x_min), (y_max - y_min)) / scale

    fig = plt.figure(figsize=[4, 4])
    ax = fig.gca()
    collection = construct_ball_trajectory(var[idx], r=1, cmap=cmap)
    ax.add_collection(collection)
    ax.set_xticks([])
    ax.set_yticks([])
    ax.axis("equal")
    ax.set_xlabel('$a_{t,1}$', fontsize=24)
    ax.set_ylabel('$a_{t,2}$', fontsize=24)

    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close() 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:20,代碼來源:plotting.py

示例7: hinton

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def hinton(matrix, max_weight=None, ax=None):
    """Draw Hinton diagram for visualizing a weight matrix."""
    ax = ax if ax is not None else plt.gca()

    if not max_weight:
        max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))

    ax.patch.set_facecolor('gray')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    for (x, y), w in np.ndenumerate(matrix):
        color = 'white' if w > 0 else 'black'
        size = np.sqrt(np.abs(w) / max_weight)
        rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
                             facecolor=color, edgecolor=color)
        ax.add_patch(rect)

    ax.autoscale_view()
    ax.invert_yaxis() 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:23,代碼來源:plotting.py

示例8: plot_tuning_curve

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_tuning_curve(tuning_region, ctr_tuning, label):
    """Draw the parameter tuning plot

    Parameters
    ----------
    tuning_region: array
        The region for tuning parameter.

    ctr_tuning: array
        The resulted ctrs for each number of the tuning parameter.

    label: string
        The name of label want to show.
    """

    plt.plot(tuning_region, ctr_tuning, 'ro-', label=label)
    plt.xlabel('parameter value')
    plt.ylabel('CTR')
    plt.legend()
    axes = plt.gca()
    axes.set_ylim([0, 1])
    plt.title("Parameter Tunning Curve")
    plt.show() 
開發者ID:ntucllab,項目名稱:striatum,代碼行數:25,代碼來源:simulation.py

示例9: main

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def main():
    streaming_batch, user_feature, actions, reward_list, action_context = get_data()
    streaming_batch_small = streaming_batch.iloc[0:10000]

    # conduct regret analyses
    experiment_bandit = ['LinUCB', 'LinThompSamp', 'Exp4P', 'UCB1', 'Exp3', 'random']
    regret = {}
    col = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w']
    i = 0
    for bandit in experiment_bandit:
        policy = policy_generation(bandit, actions)
        seq_error = policy_evaluation(policy, bandit, streaming_batch_small, user_feature, reward_list,
                                      actions, action_context)
        regret[bandit] = regret_calculation(seq_error)
        plt.plot(range(len(streaming_batch_small)), regret[bandit], c=col[i], ls='-', label=bandit)
        plt.xlabel('time')
        plt.ylabel('regret')
        plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
        axes = plt.gca()
        axes.set_ylim([0, 1])
        plt.title("Regret Bound with respect to T")
        i += 1
    plt.show() 
開發者ID:ntucllab,項目名稱:striatum,代碼行數:25,代碼來源:movielens_bandit.py

示例10: plot_pixels

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_pixels(file_name, candidate_data_single_band,
                reference_data_single_band, limits=None, fit_line=None):

    logging.info('Display: Creating pixel plot - {}'.format(file_name))
    fig = plt.figure()
    plt.hexbin(
        candidate_data_single_band, reference_data_single_band, mincnt=1)
    if not limits:
        min_value = 0
        _, ymax = plt.gca().get_ylim()
        _, xmax = plt.gca().get_xlim()
        max_value = max([ymax, xmax])
        limits = [min_value, max_value]
    plt.plot(limits, limits, 'k-')
    if fit_line:
        start = limits[0] * fit_line.gain + fit_line.offset
        end = limits[1] * fit_line.gain + fit_line.offset
        plt.plot(limits, [start, end], 'g-')
    plt.xlim(limits)
    plt.ylim(limits)
    plt.xlabel('Candidate DNs')
    plt.ylabel('Reference DNs')
    fig.savefig(file_name, bbox_inches='tight')
    plt.close(fig) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:26,代碼來源:display.py

示例11: plot_camera

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_camera(ax=None, R=np.eye(3), t=np.zeros((3,)), size=25, marker_C='.', color='b', linestyle='-', linewidth=0.1, label=None, **kwargs):
  if ax is None:
    ax = plt.gca()
  C0 = geometry.translation_to_cameracenter(R, t).ravel()
  C1 = C0 + R.T.dot( np.array([[-size],[-size],[3*size]], dtype=np.float32) ).ravel()
  C2 = C0 + R.T.dot( np.array([[-size],[+size],[3*size]], dtype=np.float32) ).ravel()
  C3 = C0 + R.T.dot( np.array([[+size],[+size],[3*size]], dtype=np.float32) ).ravel()
  C4 = C0 + R.T.dot( np.array([[+size],[-size],[3*size]], dtype=np.float32) ).ravel()

  if marker_C != '':
    ax.plot([C0[0]], [C0[1]], [C0[2]], marker=marker_C, color=color, label=label, **kwargs)
  ax.plot([C0[0], C1[0]], [C0[1], C1[1]], [C0[2], C1[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
  ax.plot([C0[0], C2[0]], [C0[1], C2[1]], [C0[2], C2[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
  ax.plot([C0[0], C3[0]], [C0[1], C3[1]], [C0[2], C3[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
  ax.plot([C0[0], C4[0]], [C0[1], C4[1]], [C0[2], C4[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
  ax.plot([C1[0], C2[0], C3[0], C4[0], C1[0]], [C1[1], C2[1], C3[1], C4[1], C1[1]], [C1[2], C2[2], C3[2], C4[2], C1[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs) 
開發者ID:autonomousvision,項目名稱:connecting_the_dots,代碼行數:18,代碼來源:plt3d.py

示例12: plot_images_grid

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_images_grid(x: torch.tensor, export_img, title: str = '', nrow=8, padding=2, normalize=False, pad_value=0):
    """Plot 4D Tensor of images of shape (B x C x H x W) as a grid."""

    grid = make_grid(x, nrow=nrow, padding=padding, normalize=normalize, pad_value=pad_value)
    npgrid = grid.cpu().numpy()

    plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')

    ax = plt.gca()
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)

    if not (title == ''):
        plt.title(title)

    plt.savefig(export_img, bbox_inches='tight', pad_inches=0.1)
    plt.clf() 
開發者ID:lukasruff,項目名稱:Deep-SAD-PyTorch,代碼行數:19,代碼來源:plot_images_grid.py

示例13: ConvertPacth

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def ConvertPacth(self, ax, patch):
        path = patch.get_path()
        lon = []
        lat = []
        for points in path.vertices:
            x, y = points[0], points[1]
            xy_pixels = ax.transData.transform(np.vstack([x, y]).T)
            xpix, ypix = xy_pixels.T
            lon.append(xpix[0])
            lat.append(ypix[0])
        from matplotlib.path import Path
        apath = Path(list(zip(lon, lat)))
        from matplotlib import patches
        apatch = patches.PathPatch(apath, linewidth=1, facecolor='none', edgecolor='k')
        plt.gca().add_patch(apatch)
        return apatch 
開發者ID:flashlxy,項目名稱:PyMICAPS,代碼行數:18,代碼來源:Micaps11Data.py

示例14: show_boxes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (rand(), rand(), rand())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:24,代碼來源:show_boxes.py

示例15: set_axes_equal

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def set_axes_equal(ax):
        """ Sets equal aspect ratio across the three axes of a 3D plot.

        Contributed by Xuefeng Zhao.

        :param ax: a Matplotlib axis, e.g., as output from plt.gca().
        """
        bounds = [ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]
        ranges = [abs(bound[1] - bound[0]) for bound in bounds]
        centers = [np.mean(bound) for bound in bounds]
        radius = 0.5 * max(ranges)
        lower_limits = centers - radius
        upper_limits = centers + radius
        ax.set_xlim3d([lower_limits[0], upper_limits[0]])
        ax.set_ylim3d([lower_limits[1], upper_limits[1]])
        ax.set_zlim3d([lower_limits[2], upper_limits[2]]) 
開發者ID:orbingol,項目名稱:NURBS-Python,代碼行數:18,代碼來源:VisMPL.py


注:本文中的matplotlib.pyplot.gca方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。