本文整理匯總了Python中matplotlib.pyplot.gca方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.gca方法的具體用法?Python pyplot.gca怎麽用?Python pyplot.gca使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.gca方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_confusion_matrix
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_QQ
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_QQ(A, B, ax=None):
if ax is None:
ax = plt.gca()
ax.scatter(B.values, A.values, color=c["Cfill"], edgecolor=c["Cedge"], clip_on=False)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
limit = max(xlim[1], ylim[0])
ax.plot([0, limit], [0, limit], '-k')
ax.set_xlim(0, limit)
ax.set_ylim(0, limit)
ax.grid(True)
set_000formatter(ax.get_xaxis())
set_000formatter(ax.get_yaxis())
ax.set_xlabel(B.name)
ax.set_ylabel(A.name)
ax.legend(["Equality"], loc="best")
return ax
示例3: plot_percentiles
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_percentiles(A, B, ax=None):
if ax is None:
ax = plt.gca()
percentiles = np.linspace(0.001, 0.999, 1000) * 100
A_pct = scipy.stats.scoreatpercentile(A.values, percentiles)
B_pct = scipy.stats.scoreatpercentile(B.values, percentiles)
percentiles = percentiles / 100.0
ax.plot(percentiles, B_pct[::-1], color=c["Bfill"], clip_on=False, linewidth=2)
ax.plot(percentiles, A_pct[::-1], color=c["Afill"], clip_on=False, linewidth=2)
ax.set_xlabel("Cumulative frequency")
ax.grid(True)
ax.xaxis.grid(True, which="both")
set_000formatter(ax.get_yaxis())
ax.set_xscale("logit")
xticks = ax.get_xticks()
xticks_minr = ax.get_xticks(minor=True)
ax.set_xticklabels([], minor=True)
ax.set_xticks([0.01, 0.1, 0.5, 0.9, 0.99])
ax.set_xticklabels(["1", "10", "50", "90", "99"])
ax.set_xlim(0.001, 0.999)
ax.legend([B.name, A.name], loc="best")
return ax
示例4: newline
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def newline(p1, p2, color=None, marker=None):
"""
https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib
:param p1:
:param p2:
:return:
"""
ax = plt.gca()
xmin, xmax = ax.get_xbound()
if (p2[0] == p1[0]):
xmin = xmax = p1[0]
ymin, ymax = ax.get_ybound()
else:
ymax = p1[1] + (p2[1] - p1[1]) / (p2[0] - p1[0]) * (xmax - p1[0])
ymin = p1[1] + (p2[1] - p1[1]) / (p2[0] - p1[0]) * (xmin - p1[0])
l = mlines.Line2D([xmin, xmax], [ymin, ymax], color=color, marker=marker)
ax.add_line(l)
return l
示例5: set_frame
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def set_frame(frame):
# convert 3x6 world_frame matrix into three line_data objects which is 3x2 (row:point index, column:x,y,z)
lines_data = [frame[:,[0,2]], frame[:,[1,3]], frame[:,[4,5]]]
ax = plt.gca()
lines = ax.get_lines()
for line, line_data in zip(lines[:3], lines_data):
x, y, z = line_data
line.set_data(x, y)
line.set_3d_properties(z)
global history, count
# plot history trajectory
history[count] = frame[:,4]
if count < np.size(history, 0) - 1:
count += 1
zline = history[:count,-1]
xline = history[:count,0]
yline = history[:count,1]
lines[-1].set_data(xline, yline)
lines[-1].set_3d_properties(zline)
# ax.plot3D(xline, yline, zline, 'blue')
示例6: plot_ball_trajectory
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_ball_trajectory(var, filename, idx=0, scale=30, cmap='Blues'):
# Calc optimal radius of ball
x_min, y_min = np.min(var[:, :, :2], axis=(0, 1))
x_max, y_max = np.max(var[:, :, :2], axis=(0, 1))
r = max((x_max - x_min), (y_max - y_min)) / scale
fig = plt.figure(figsize=[4, 4])
ax = fig.gca()
collection = construct_ball_trajectory(var[idx], r=1, cmap=cmap)
ax.add_collection(collection)
ax.set_xticks([])
ax.set_yticks([])
ax.axis("equal")
ax.set_xlabel('$a_{t,1}$', fontsize=24)
ax.set_ylabel('$a_{t,2}$', fontsize=24)
plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
plt.close()
示例7: hinton
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def hinton(matrix, max_weight=None, ax=None):
"""Draw Hinton diagram for visualizing a weight matrix."""
ax = ax if ax is not None else plt.gca()
if not max_weight:
max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2))
ax.patch.set_facecolor('gray')
ax.set_aspect('equal', 'box')
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
for (x, y), w in np.ndenumerate(matrix):
color = 'white' if w > 0 else 'black'
size = np.sqrt(np.abs(w) / max_weight)
rect = plt.Rectangle([x - size / 2, y - size / 2], size, size,
facecolor=color, edgecolor=color)
ax.add_patch(rect)
ax.autoscale_view()
ax.invert_yaxis()
示例8: plot_tuning_curve
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_tuning_curve(tuning_region, ctr_tuning, label):
"""Draw the parameter tuning plot
Parameters
----------
tuning_region: array
The region for tuning parameter.
ctr_tuning: array
The resulted ctrs for each number of the tuning parameter.
label: string
The name of label want to show.
"""
plt.plot(tuning_region, ctr_tuning, 'ro-', label=label)
plt.xlabel('parameter value')
plt.ylabel('CTR')
plt.legend()
axes = plt.gca()
axes.set_ylim([0, 1])
plt.title("Parameter Tunning Curve")
plt.show()
示例9: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def main():
streaming_batch, user_feature, actions, reward_list, action_context = get_data()
streaming_batch_small = streaming_batch.iloc[0:10000]
# conduct regret analyses
experiment_bandit = ['LinUCB', 'LinThompSamp', 'Exp4P', 'UCB1', 'Exp3', 'random']
regret = {}
col = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w']
i = 0
for bandit in experiment_bandit:
policy = policy_generation(bandit, actions)
seq_error = policy_evaluation(policy, bandit, streaming_batch_small, user_feature, reward_list,
actions, action_context)
regret[bandit] = regret_calculation(seq_error)
plt.plot(range(len(streaming_batch_small)), regret[bandit], c=col[i], ls='-', label=bandit)
plt.xlabel('time')
plt.ylabel('regret')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
axes = plt.gca()
axes.set_ylim([0, 1])
plt.title("Regret Bound with respect to T")
i += 1
plt.show()
示例10: plot_pixels
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_pixels(file_name, candidate_data_single_band,
reference_data_single_band, limits=None, fit_line=None):
logging.info('Display: Creating pixel plot - {}'.format(file_name))
fig = plt.figure()
plt.hexbin(
candidate_data_single_band, reference_data_single_band, mincnt=1)
if not limits:
min_value = 0
_, ymax = plt.gca().get_ylim()
_, xmax = plt.gca().get_xlim()
max_value = max([ymax, xmax])
limits = [min_value, max_value]
plt.plot(limits, limits, 'k-')
if fit_line:
start = limits[0] * fit_line.gain + fit_line.offset
end = limits[1] * fit_line.gain + fit_line.offset
plt.plot(limits, [start, end], 'g-')
plt.xlim(limits)
plt.ylim(limits)
plt.xlabel('Candidate DNs')
plt.ylabel('Reference DNs')
fig.savefig(file_name, bbox_inches='tight')
plt.close(fig)
示例11: plot_camera
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_camera(ax=None, R=np.eye(3), t=np.zeros((3,)), size=25, marker_C='.', color='b', linestyle='-', linewidth=0.1, label=None, **kwargs):
if ax is None:
ax = plt.gca()
C0 = geometry.translation_to_cameracenter(R, t).ravel()
C1 = C0 + R.T.dot( np.array([[-size],[-size],[3*size]], dtype=np.float32) ).ravel()
C2 = C0 + R.T.dot( np.array([[-size],[+size],[3*size]], dtype=np.float32) ).ravel()
C3 = C0 + R.T.dot( np.array([[+size],[+size],[3*size]], dtype=np.float32) ).ravel()
C4 = C0 + R.T.dot( np.array([[+size],[-size],[3*size]], dtype=np.float32) ).ravel()
if marker_C != '':
ax.plot([C0[0]], [C0[1]], [C0[2]], marker=marker_C, color=color, label=label, **kwargs)
ax.plot([C0[0], C1[0]], [C0[1], C1[1]], [C0[2], C1[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
ax.plot([C0[0], C2[0]], [C0[1], C2[1]], [C0[2], C2[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
ax.plot([C0[0], C3[0]], [C0[1], C3[1]], [C0[2], C3[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
ax.plot([C0[0], C4[0]], [C0[1], C4[1]], [C0[2], C4[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
ax.plot([C1[0], C2[0], C3[0], C4[0], C1[0]], [C1[1], C2[1], C3[1], C4[1], C1[1]], [C1[2], C2[2], C3[2], C4[2], C1[2]], color=color, label='_nolegend_', linestyle=linestyle, linewidth=linewidth, **kwargs)
示例12: plot_images_grid
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def plot_images_grid(x: torch.tensor, export_img, title: str = '', nrow=8, padding=2, normalize=False, pad_value=0):
"""Plot 4D Tensor of images of shape (B x C x H x W) as a grid."""
grid = make_grid(x, nrow=nrow, padding=padding, normalize=normalize, pad_value=pad_value)
npgrid = grid.cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
ax = plt.gca()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
if not (title == ''):
plt.title(title)
plt.savefig(export_img, bbox_inches='tight', pad_inches=0.1)
plt.clf()
示例13: ConvertPacth
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def ConvertPacth(self, ax, patch):
path = patch.get_path()
lon = []
lat = []
for points in path.vertices:
x, y = points[0], points[1]
xy_pixels = ax.transData.transform(np.vstack([x, y]).T)
xpix, ypix = xy_pixels.T
lon.append(xpix[0])
lat.append(ypix[0])
from matplotlib.path import Path
apath = Path(list(zip(lon, lat)))
from matplotlib import patches
apatch = patches.PathPatch(apath, linewidth=1, facecolor='none', edgecolor='k')
plt.gca().add_patch(apatch)
return apatch
示例14: show_boxes
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def show_boxes(im, dets, classes, scale = 1.0):
plt.cla()
plt.axis("off")
plt.imshow(im)
for cls_idx, cls_name in enumerate(classes):
cls_dets = dets[cls_idx]
for det in cls_dets:
bbox = det[:4] * scale
color = (rand(), rand(), rand())
rect = plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=color, linewidth=2.5)
plt.gca().add_patch(rect)
if cls_dets.shape[1] == 5:
score = det[-1]
plt.gca().text(bbox[0], bbox[1],
'{:s} {:.3f}'.format(cls_name, score),
bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
plt.show()
return im
示例15: set_axes_equal
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import gca [as 別名]
def set_axes_equal(ax):
""" Sets equal aspect ratio across the three axes of a 3D plot.
Contributed by Xuefeng Zhao.
:param ax: a Matplotlib axis, e.g., as output from plt.gca().
"""
bounds = [ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]
ranges = [abs(bound[1] - bound[0]) for bound in bounds]
centers = [np.mean(bound) for bound in bounds]
radius = 0.5 * max(ranges)
lower_limits = centers - radius
upper_limits = centers + radius
ax.set_xlim3d([lower_limits[0], upper_limits[0]])
ax.set_ylim3d([lower_limits[1], upper_limits[1]])
ax.set_zlim3d([lower_limits[2], upper_limits[2]])