本文整理匯總了Python中matplotlib.pyplot.fill方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.fill方法的具體用法?Python pyplot.fill怎麽用?Python pyplot.fill使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.fill方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_polygon
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def plot_polygon(poly, symbol='k-', **kwargs):
"""Plots a polygon using the given symbol."""
for i in range(poly.GetGeometryCount()):
subgeom = poly.GetGeometryRef(i)
x, y = zip(*subgeom.GetPoints())
plt.plot(x, y, symbol, **kwargs)
# Use this function to fill polygons (shown shortly after
# this listing in the text). Uncomment this one and comment
# out the one above.
# def plot_polygon(poly, symbol='w', **kwargs):
# """Plots a polygon using the given symbol."""
# for i in range(poly.GetGeometryCount()):
# x, y = zip(*poly.GetGeometryRef(i).GetPoints())
# plt.fill(x, y, symbol, **kwargs)
# This function is new.
示例2: AreaPlot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def AreaPlot(self, Lon, Lat, Set=['y',1,'k',1]):
x, y = self._map(Lon, Lat)
if Set[0]:
self._zo += 1
plt.fill(x, y, color = Set[0],
alpha = Set[1],
zorder = self._zo)
if Set[2]:
self._zo += 1
plt.plot(x, y, Set[2],
linewidth = Set[3],
zorder = self._zo)
#---------------------------------------------------------------------------------------
示例3: make_topography_overlay_4_blockplot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def make_topography_overlay_4_blockplot(self, cell_number, direction):
p1, p2 = self.calculate_p1p2(direction, cell_number)
resx = self.model._grid.topography.resolution[0]
resy = self.model._grid.topography.resolution[1]
print('p1', p1, 'p2', p2)
x, y, z = self._slice_topo_4_sections(p1, p2, resx, resy)
if direction == 'x':
a = np.vstack((y, z)).T
ext = self.model._grid.regular_grid.extent[[2, 3]]
elif direction == 'y':
a = np.vstack((x, z)).T
ext = self.model._grid.regular_grid.extent[[0, 1]]
a = np.append(a,
([ext[1], a[:, 1][-1]],
[ext[1], self.model._grid.regular_grid.extent[5]],
[ext[0], self.model._grid.regular_grid.extent[5]],
[ext[0], a[:, 1][0]]))
line = a.reshape(-1, 2)
plt.fill(line[:, 0], line[:, 1], color='k')
示例4: plot_optimizer
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def plot_optimizer(opt, lower, upper):
import matplotlib.pyplot as plt
plt.set_cmap("viridis")
if not opt.models:
print('Can not plot opt, since models do not exist yet.')
return
model = opt.models[-1]
x = np.linspace(lower, upper).reshape(-1, 1)
x_model = opt.space.transform(x)
# Plot Model(x) + contours
y_pred, sigma = model.predict(x_model, return_std=True)
plt.plot(x, -y_pred, "g--", label=r"$\mu(x)$")
plt.fill(np.concatenate([x, x[::-1]]),
np.concatenate([-y_pred - 1.9600 * sigma,
(-y_pred + 1.9600 * sigma)[::-1]]),
alpha=.2, fc="g", ec="None")
# Plot sampled points
plt.plot(opt.Xi, -np.array(opt.yi),
"r.", markersize=8, label="Observations")
# Adjust plot layout
plt.grid()
plt.legend(loc='best')
plt.show()
示例5: negative_contour_area
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def negative_contour_area(mpl_obj):
"""
Returns a array of contour levels and
corresponding cumulative area of contours
specifically used for calculating negative contour's area when the contours are depth of lake
# Refer: Nikolai Shokhirev http://www.numericalexpert.com/blog/area_calculation/
:param mpl_obj: Matplotlib contour object
:return: [(level1, area1), (level1, area1+area2)]
"""
n_c = len(mpl_obj.collections) # n_c = no of contours
print 'No. of contours = {0}'.format(n_c)
# area = 0.0000
cont_area_array = []
for contour in range(n_c):
n_p = len(mpl_obj.collections[contour].get_paths())
zc = mpl_obj.levels[contour]
print zc
print n_p
area = 0.000
for path in range(n_p):
p = mpl_obj.collections[contour].get_paths()[path]
v = p.vertices
l = len(v)
s = 0.0000
# plt.figure()
# plt.fill(v[:, 0], v[:, 1], facecolor='b')
# plt.grid()
# plt.show()
for i in range(l):
j = (i + 1) % l
s += (v[j, 0] - v[i, 0]) * (v[j, 1] + v[i, 1])
poly_area = abs(0.5 * s)
area += poly_area
cont_area_array.append((zc, area))
return cont_area_array
示例6: poly_area
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def poly_area(xy):
"""
Calculates polygon area
x = xy[:,0], y[xy[:,1]
:param xy:
:return:
"""
l = len(xy)
s = 0.0
for i in range(l):
j = (i+1) % l
s += (xy[j, 0] - xy[i, 0]) * (xy[j,1]+ xy[i,1])
return -0.5*s
# # zero contour has two paths 0, 1
# p_0_0 = CS.collections[0].get_paths()[0] # CS.collections[index of contour].get_paths()[index of path]
# p_0_1 = CS.collections[0].get_paths()[1]
# v_0_0 = p_0_0.vertices
# v_0_1 = p_0_1.vertices
# area_0_0 = abs(poly_area(v_0_0))
# area_0_1 = abs(poly_area(v_0_1))
# area_0 = area_0_0 + area_0_1
# z_0 = CS.levels[0]
# # print z_0, area_0
# plt.fill(v_0_0[:,0], v_0_0[:,1], facecolor='g')
# plt.show()
# # 0.4 contour has three paths 0,1,2
# print len(CS.collections[21].get_paths())
示例7: create_figure
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def create_figure():
plt.figure()
x = np.linspace(0, 1, 15)
# line plot
plt.plot(x, x ** 2, "b-")
# marker
plt.plot(x, 1 - x**2, "g>")
# filled paths and patterns
plt.fill_between([0., .4], [.4, 0.], hatch='//', facecolor="lightgray",
edgecolor="red")
plt.fill([3, 3, .8, .8, 3], [2, -2, -2, 0, 2], "b")
# text and typesetting
plt.plot([0.9], [0.5], "ro", markersize=3)
plt.text(0.9, 0.5, 'unicode (ü, °, µ) and math ($\\mu_i = x_i^2$)',
ha='right', fontsize=20)
plt.ylabel('sans-serif, blue, $\\frac{\\sqrt{x}}{y^2}$..',
family='sans-serif', color='blue')
plt.xlim(0, 1)
plt.ylim(0, 1)
# test compiling a figure to pdf with xelatex
示例8: display
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def display(x, color, list_save=None) :
kde = KernelDensity(kernel='gaussian', bandwidth= .005 ).fit(x.data.cpu().numpy())
dens = np.exp( kde.score_samples(t_plot) )
dens[0] = 0 ; dens[-1] = 0;
plt.fill(t_plot, dens, color=color)
if list_save is not None :
list_save.append(dens.ravel()) # We'll save a csv at the end
示例9: _plot_sequence
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def _plot_sequence(self, seq, ro_ind, x_unit, bounds, col = "C0", plot_readout = True):
"""
The actual plotting of the sequences happens here.
Input:
seq: sequence (as array) to be plotted
ro_ind: index of the readout in seq
x_unit: x_unit for the time axis
bounds: boundaries for the plot (xmin, xmax, ymin, ymax)
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if plot_readout:
fig = plt.figure(figsize = (18, 6))
xmin, xmax, ymin, ymax = bounds
samplerate = self._sample.clock
time = -(np.arange(0, len(seq) + 1, 1) - ro_ind) / (samplerate * self._x_unit[x_unit])
# make sure last point of the waveform goes to zero
seq = np.append(seq, 0)
# plot sequence
plt.plot(time, seq, col)
plt.fill(time, seq, color = col, alpha = 0.2)
# plot readout
if plot_readout:
plt.fill([0, 0, - self._sample.readout_tone_length / self._x_unit[x_unit], - self._sample.readout_tone_length / self._x_unit[x_unit]],
[0, ymax, ymax, 0], color = "C7", alpha = 0.3)
# add label for readout
plt.text(-0.5*self._sample.readout_tone_length / self._x_unit[x_unit], ymax/2.,
"readout", horizontalalignment = "center", verticalalignment = "center", rotation = 90, size = 14)
# adjust bounds
plt.xlim(xmin + 0.005 * abs(xmax - xmin), xmax - 0.006 * abs(xmax - xmin))
plt.ylim(ymin, ymax + 0.025 * (ymax - ymin))
plt.xlabel("time " + x_unit)
return
示例10: _plot_sequences
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def _plot_sequences(self, seq_ind, seqs, ro_inds, x_unit, bounds):
"""
The actual plotting of the sequences happens here.
Args:
seqs: list of sequences to be plotted (i.e. one list of sequence for each channel)
ro_inds: indices of the readout
x_unit: x_unit for the time axis
bounds: boundaries of the plot (xmin, xmax, ymin, ymax)
show_quadrature: set to "I" or "Q" if you want to display either quadrature instead of the amplitude
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
fig = plt.figure(figsize=(18,6))
xmin, xmax, ymin, ymax = bounds
samplerate = self._sample.clock
# plot sequence
for i, chan in enumerate(self.channels[1:]):
if len(ro_inds[i]) > seq_ind:
chan._plot_sequence(seqs[i][seq_ind], ro_inds[i][seq_ind], x_unit, bounds, col = self._chancols[i + 1], plot_readout = False)
# plot readout
plt.fill([0, 0, - self._sample.readout_tone_length / self._x_unit[x_unit], - self._sample.readout_tone_length / self._x_unit[x_unit]],
[0, ymax, ymax, 0], color = "C7", alpha = 0.3)
# add label for readout
plt.text(-0.5*self._sample.readout_tone_length / self._x_unit[x_unit], ymax/2.,
"readout", horizontalalignment = "center", verticalalignment = "center", rotation = 90, size = 14)
# adjust plot limits
plt.xlim(xmin + 0.005 * abs(xmax - xmin), xmax - 0.006 * abs(xmax - xmin))
plt.ylim(ymin, ymax + 0.025 * (ymax - ymin))
plt.xlabel("time " + x_unit)
return
示例11: plot_visible_slice
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def plot_visible_slice(
self, level, outline_prec=1.0e-2, plot_srgb_gamut=True, fill_color="0.8"
):
# first plot the monochromatic outline
mono_xy, conn_xy = get_mono_outline_xy(
observer=cie_1931_2(), max_stepsize=outline_prec
)
mono_vals = numpy.array([self._bisect(xy, self.k0, level) for xy in mono_xy])
conn_vals = numpy.array([self._bisect(xy, self.k0, level) for xy in conn_xy])
k1, k2 = [k for k in [0, 1, 2] if k != self.k0]
plt.plot(mono_vals[:, k1], mono_vals[:, k2], "-", color="k")
plt.plot(conn_vals[:, k1], conn_vals[:, k2], ":", color="k")
#
if fill_color is not None:
xyz = numpy.vstack([mono_vals, conn_vals[1:]])
plt.fill(xyz[:, k1], xyz[:, k2], facecolor=fill_color, zorder=0)
if plot_srgb_gamut:
self._plot_srgb_gamut(self.k0, level)
plt.axis("equal")
plt.xlabel(self.labels[k1])
plt.ylabel(self.labels[k2])
plt.title(f"{self.labels[self.k0]} = {level}")
示例12: _plot_monochromatic
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def _plot_monochromatic(observer, xy_to_2d, fill_horseshoe=True):
# draw outline of monochromatic spectra
lmbda = 1.0e-9 * numpy.arange(380, 701)
values = []
# TODO vectorize (see <https://github.com/numpy/numpy/issues/10439>)
for k, _ in enumerate(lmbda):
data = numpy.zeros(len(lmbda))
data[k] = 1.0
values.append(_xyy_from_xyz100(spectrum_to_xyz100((lmbda, data), observer))[:2])
values = numpy.array(values)
# Add the values between the first and the last point of the horseshoe
t = numpy.linspace(0.0, 1.0, 101)
connect = xy_to_2d(numpy.outer(values[0], t) + numpy.outer(values[-1], 1 - t))
values = xy_to_2d(values.T).T
full = numpy.concatenate([values, connect.T])
# fill horseshoe area
if fill_horseshoe:
plt.fill(*full.T, color=[0.8, 0.8, 0.8], zorder=0)
# plot horseshoe outline
plt.plot(
values[:, 0],
values[:, 1],
"-k",
# label="monochromatic light"
)
# plot dotted connector
plt.plot(connect[0], connect[1], ":k")
return
示例13: cl_dist_map
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def cl_dist_map(x,y,z,xmin,xmax,ymin,ymax,dx):
"""function for centerline rasterization and distance map calculation (does not return zmap)
used for cutoffs only
inputs:
x,y,z - coordinates of centerline
xmin, xmax, ymin, ymax - x and y coordinates that define the area of interest
dx - gridcell size (m)
returns:
cl_dist - distance map (distance from centerline)
x_pix, y_pix, - x and y pixel coordinates of the centerline
"""
y = y[(x>xmin) & (x<xmax)]
z = z[(x>xmin) & (x<xmax)]
x = x[(x>xmin) & (x<xmax)]
xdist = xmax - xmin
ydist = ymax - ymin
iwidth = int((xmax-xmin)/dx)
iheight = int((ymax-ymin)/dx)
xratio = iwidth/xdist
# create list with pixel coordinates:
pixels = []
for i in range(0,len(x)):
px = int(iwidth - (xmax - x[i]) * xratio)
py = int(iheight - (ymax - y[i]) * xratio)
pixels.append((px,py))
# create image and numpy array:
img = Image.new("RGB", (iwidth, iheight), "white")
draw = ImageDraw.Draw(img)
draw.line(pixels, fill="rgb(0, 0, 0)") # draw centerline as black line
pix = np.array(img)
cl = pix[:,:,0]
cl[cl==255] = 1 # set background to 1 (centerline is 0)
# calculate Euclidean distance map:
cl_dist, inds = ndimage.distance_transform_edt(cl, return_indices=True)
y_pix,x_pix = np.where(cl==0)
return cl_dist, x_pix, y_pix
示例14: PlotCompTable
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def PlotCompTable(CompTable):
for CT in CompTable:
X = [CT[2], CT[3], CT[3], CT[2], CT[2]]
Y = [CT[0], CT[0], CT[0]+CT[1], CT[0]+CT[1], CT[0]]
plt.plot(X, Y, 'r--', linewidth=2)
plt.fill(X, Y, color='y',alpha=0.1)
#-----------------------------------------------------------------------------------------
示例15: _blob
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import fill [as 別名]
def _blob(x, y, w, w_max, area, cmap=None):
"""
Draws a square-shaped blob with the given area (< 1) at the given coordinates.
"""
hs = np.sqrt(area) / 2
xcorners = np.array([x - hs, x + hs, x + hs, x - hs])
ycorners = np.array([y - hs, y - hs, y + hs, y + hs])
plt.fill(xcorners, ycorners, color=cmap) # cmap(int((w + w_max) * 256 / (2 * w_max))))
# Modified from QuTip (see https://bit.ly/2LrbayH ) which in turn modified the code from the
# SciPy Cookbook.