本文整理匯總了Python中matplotlib.pyplot.contourf方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.contourf方法的具體用法?Python pyplot.contourf怎麽用?Python pyplot.contourf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.contourf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: show_decision_boundary
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def show_decision_boundary(self, model):
h = 0.001
x, y = np.meshgrid(np.arange(-1, 1, h), np.arange(-1, 1, h))
out = model(Tensor(np.c_[x.ravel(), y.ravel()]))
pred = np.argmax(out.data, axis=1)
if gpu:
plt.contourf(to_cpu(x), to_cpu(y), to_cpu(pred.reshape(x.shape)))
for c in range(self.num_class):
plt.scatter(to_cpu(self.data[(self.label[:,c]>0)][:,0]),to_cpu(self.data[(self.label[:,c]>0)][:,1]))
else:
plt.contourf(x, y, pred.reshape(x.shape))
for c in range(self.num_class):
plt.scatter(self.data[(self.label[:,c]>0)][:,0],self.data[(self.label[:,c]>0)][:,1])
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.axis('off')
plt.show()
示例2: plot_f
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot_f(f, filenm='test_function.eps'):
# only for 2D functions
import matplotlib.pyplot as plt
import matplotlib
font = {'size': 20}
matplotlib.rc('font', **font)
delta = 0.005
x = np.arange(0.0, 1.0, delta)
y = np.arange(0.0, 1.0, delta)
nx = len(x)
X, Y = np.meshgrid(x, y)
xx = np.array((X.ravel(), Y.ravel())).T
yy = f(xx)
plt.figure()
plt.contourf(X, Y, yy.reshape(nx, nx), levels=np.linspace(yy.min(), yy.max(), 40))
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.colorbar()
plt.scatter(f.argmax[0], f.argmax[1], s=180, color='k', marker='+')
plt.savefig(filenm)
示例3: visualizeFit
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def visualizeFit(X,mu,sigma2):
x = np.arange(0, 36, 0.5) # 0-36,步長0.5
y = np.arange(0, 36, 0.5)
X1,X2 = np.meshgrid(x,y) # 要畫等高線,所以meshgird
Z = multivariateGaussian(np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))), mu, sigma2) # 計算對應的高斯分布函數
Z = Z.reshape(X1.shape) # 調整形狀
plt.plot(X[:,0],X[:,1],'bx')
if np.sum(np.isinf(Z).astype(float)) == 0: # 如果計算的為無窮,就不用畫了
#plt.contourf(X1,X2,Z,10.**np.arange(-20, 0, 3),linewidth=.5)
CS = plt.contour(X1,X2,Z,10.**np.arange(-20, 0, 3),color='black',linewidth=.5) # 畫等高線,Z的值在10.**np.arange(-20, 0, 3)
#plt.clabel(CS)
plt.show()
# 選擇最優的epsilon,即:使F1Score最大
示例4: contour_pressure
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def contour_pressure(self):
"""
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
x, y = self.meshgrid()
p_coeff = np.polyfit(self.volumes, self.pressure.T, deg=self._fit_order)
p_grid = np.array([np.polyval(p_coeff, v) for v in self._volumes]).T
plt.contourf(x, y, p_grid)
plt.plot(self.get_minimum_energy_path(), self.temperatures)
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
示例5: contour_entropy
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def contour_entropy(self):
"""
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
s_coeff = np.polyfit(self.volumes, self.entropy.T, deg=self._fit_order)
s_grid = np.array([np.polyval(s_coeff, v) for v in self.volumes]).T
x, y = self.meshgrid()
plt.contourf(x, y, s_grid)
plt.plot(self.get_minimum_energy_path(), self.temperatures)
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
示例6: plot_contourf
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot_contourf(self, ax=None, show_min_erg_path=False):
"""
Args:
ax:
show_min_erg_path:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
x, y = self.meshgrid()
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.contourf(x, y, self.energies)
if show_min_erg_path:
plt.plot(self.get_minimum_energy_path(), self.temperatures, "w--")
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
return ax
示例7: test_given_colors_levels_and_extends
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def test_given_colors_levels_and_extends():
_, axes = plt.subplots(2, 4)
data = np.arange(12).reshape(3, 4)
colors = ['red', 'yellow', 'pink', 'blue', 'black']
levels = [2, 4, 8, 10]
for i, ax in enumerate(axes.flatten()):
plt.sca(ax)
filled = i % 2 == 0.
extend = ['neither', 'min', 'max', 'both'][i // 2]
if filled:
last_color = -1 if extend in ['min', 'max'] else None
plt.contourf(data, colors=colors[:last_color], levels=levels,
extend=extend)
else:
last_level = -1 if extend == 'both' else None
plt.contour(data, colors=colors, levels=levels[:last_level],
extend=extend)
plt.colorbar()
示例8: test_contour_datetime_axis
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def test_contour_datetime_axis():
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
base = datetime.datetime(2013, 1, 1)
x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
y = np.arange(20)
z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
z = z1 * z2
plt.subplot(221)
plt.contour(x, y, z)
plt.subplot(222)
plt.contourf(x, y, z)
x = np.repeat(x[np.newaxis], 20, axis=0)
y = np.repeat(y[:, np.newaxis], 20, axis=1)
plt.subplot(223)
plt.contour(x, y, z)
plt.subplot(224)
plt.contourf(x, y, z)
for ax in fig.get_axes():
for label in ax.get_xticklabels():
label.set_ha('right')
label.set_rotation(30)
示例9: test_colorbar_get_ticks
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def test_colorbar_get_ticks():
# test feature for #5792
plt.figure()
data = np.arange(1200).reshape(30, 40)
levels = [0, 200, 400, 600, 800, 1000, 1200]
plt.subplot()
plt.contourf(data, levels=levels)
# testing getter for user set ticks
userTicks = plt.colorbar(ticks=[0, 600, 1200])
assert userTicks.get_ticks().tolist() == [0, 600, 1200]
# testing for getter after calling set_ticks
userTicks.set_ticks([600, 700, 800])
assert userTicks.get_ticks().tolist() == [600, 700, 800]
# testing for getter after calling set_ticks with some ticks out of bounds
userTicks.set_ticks([600, 1300, 1400, 1500])
assert userTicks.get_ticks().tolist() == [600]
# testing getter when no ticks are assigned
defTicks = plt.colorbar(orientation='horizontal')
assert defTicks.get_ticks().tolist() == levels
示例10: test_given_colors_levels_and_extends
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def test_given_colors_levels_and_extends():
_, axes = plt.subplots(2, 4)
data = np.arange(12).reshape(3, 4)
colors = ['red', 'yellow', 'pink', 'blue', 'black']
levels = [2, 4, 8, 10]
for i, ax in enumerate(axes.flatten()):
filled = i % 2 == 0.
extend = ['neither', 'min', 'max', 'both'][i // 2]
if filled:
# If filled, we have 3 colors with no extension,
# 4 colors with one extension, and 5 colors with both extensions
first_color = 1 if extend in ['max', 'neither'] else None
last_color = -1 if extend in ['min', 'neither'] else None
c = ax.contourf(data, colors=colors[first_color:last_color],
levels=levels, extend=extend)
else:
# If not filled, we have 4 levels and 4 colors
c = ax.contour(data, colors=colors[:-1],
levels=levels, extend=extend)
plt.colorbar(c, ax=ax)
示例11: plot_heatmap
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot_heatmap(self, data_matrix, title="", xlab="", ylab="", colormap=plt.cm.jet):
"""Plot heatmap of data matrix.
:param self: object.
:param data_matrix: 2D array to be plotted.
:param title: Figure title.
:param xlab: X axis label.
:param ylab: Y axis label.
:param colormap: matplotlib color map.
:retuns: None
:rtype: object
"""
"""
"""
fig = plt.figure()
p = plt.contourf(data_matrix)
plt.colorbar(p, orientation='vertical', cmap=colormap)
self._set_properties_and_close(fig, title, xlab, ylab)
示例12: plot_decision_boundary
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot_decision_boundary(pred_func, X, y, title=None):
"""分類器畫圖函數,可畫出樣本點和決策邊界
:param pred_func: predict函數
:param X: 訓練集X
:param y: 訓練集Y
:return: None
"""
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
if title:
plt.title(title)
plt.show()
示例13: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot(X,Y,pred_func):
# determine canvas borders
mins = np.amin(X,0);
mins = mins - 0.1*np.abs(mins);
maxs = np.amax(X,0);
maxs = maxs + 0.1*maxs;
## generate dense grid
xs,ys = np.meshgrid(np.linspace(mins[0,0],maxs[0,0],300),
np.linspace(mins[0,1], maxs[0,1], 300));
# evaluate model on the dense grid
Z = pred_func(np.c_[xs.flatten(), ys.flatten()]);
Z = Z.reshape(xs.shape)
# Plot the contour and training examples
plt.contourf(xs, ys, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], c=Y[:,1], s=50,
cmap=colors.ListedColormap(['orange', 'blue']))
plt.show()
示例14: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot(self, level_set=True):
import matplotlib.pyplot as plt
x0, x1, y0, y1 = self.bounding_box
w = x1 - x0
h = x1 - x0
x = numpy.linspace(x0 - w * 0.1, x1 + w * 0.1, 101)
y = numpy.linspace(y0 - h * 0.1, y1 + h * 0.1, 101)
X, Y = numpy.meshgrid(x, y)
Z = self.dist(numpy.array([X, Y]))
if level_set:
alpha = max([abs(numpy.min(Z)), abs(numpy.min(Z))])
cf = plt.contourf(
X, Y, Z, levels=20, cmap=plt.cm.coolwarm, vmin=-alpha, vmax=alpha
)
plt.colorbar(cf)
# mark the 0-level (the domain boundary)
plt.contour(X, Y, Z, levels=[0.0], colors="k")
plt.gca().set_aspect("equal")
示例15: plot_proba_map
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contourf [as 別名]
def plot_proba_map(i, lat,lon, clusters, class_prob, label,
lat_event, lon_event):
plt.clf()
class_prob = class_prob / np.sum(class_prob)
assert np.isclose(np.sum(class_prob),1)
risk_map = np.zeros_like(clusters,dtype=np.float64)
for cluster_id in range(len(class_prob)):
x,y = np.where(clusters == cluster_id)
risk_map[x,y] = class_prob[cluster_id]
plt.contourf(lon,lat,risk_map,cmap='YlOrRd',alpha=0.9,
origin='lower',vmin=0.0,vmax=1.0)
plt.colorbar()
plt.plot(lon_event, lat_event, marker='+',c='k',lw='5')
plt.contour(lon,lat,clusters,colors='k',hold='on')
plt.xlim((min(lon),max(lon)))
plt.ylim((min(lat),max(lat)))
png_name = os.path.join(args.output,
'{}_pred_{}_label_{}.eps'.format(i,np.argmax(class_prob),
label))
plt.savefig(png_name)
plt.close()