當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.contour方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.contour方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.contour方法的具體用法?Python pyplot.contour怎麽用?Python pyplot.contour使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.contour方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_da

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def show_da(out_da, x_array, y_array, title=""):
    nx = len(x_array)
    ny = len(y_array)
    out_da = out_da.reshape(ny,nx)
    xmin, xmax, ymin, ymax = np.min(x_array), np.max(x_array), np.min(y_array), np.max(y_array)
    extent = xmin, xmax, ymin, ymax

    plt.figure(figsize=(10, 7))
    fig1 = plt.contour(out_da, linewidths=2,extent = extent)#, colors = 'r')

    plt.grid(True)
    plt.title(title)
    plt.xlabel("X, m")
    plt.ylabel("Y, m")
    cb = plt.colorbar()
    cb.set_label('Nturns')

    plt.show() 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:20,代碼來源:accelerator.py

示例2: Cont

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def Cont(imG):
#This is meant to create plots similar to the ones from
#https://www.bu.edu/blazars/VLBA_GLAST/3c454.html
#for the visual comparison

    import matplotlib.pyplot as plt
    plt.figure()
    Z = np.reshape(imG.imvec,(imG.xdim,imG.ydim))
    pov = imG.xdim*imG.psize
    pov_mas = pov/(RADPERUAS*1.e3)
    Zmax = np.amax(Z)
    print(Zmax)

    levels = np.array((-0.00125*Zmax,0.00125*Zmax,0.0025*Zmax, 0.005*Zmax, 0.01*Zmax,
                        0.02*Zmax, 0.04*Zmax, 0.08*Zmax, 0.16*Zmax, 0.32*Zmax, 0.64*Zmax))
    CS = plt.contour(Z, levels,
                     origin='lower',
                     linewidths=2,
                     extent=(-pov_mas/2., pov_mas/2., -pov_mas/2., pov_mas/2.))
    plt.show() 
開發者ID:achael,項目名稱:eht-imaging,代碼行數:22,代碼來源:dynamical_imaging.py

示例3: plot_decisionBoundary

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def plot_decisionBoundary(X, y, model, class_='linear'):
    plt = plot_data(X, y)

    # 線性邊界        
    if class_ == 'linear':
        w = model.coef_
        b = model.intercept_
        xp = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 100)
        yp = -(w[0, 0] * xp + b) / w[0, 1]
        plt.plot(xp, yp, 'b-', linewidth=2.0)
        plt.show()
    else:  # 非線性邊界
        x_1 = np.transpose(np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 100).reshape(1, -1))
        x_2 = np.transpose(np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), 100).reshape(1, -1))
        X1, X2 = np.meshgrid(x_1, x_2)
        vals = np.zeros(X1.shape)
        for i in range(X1.shape[1]):
            this_X = np.hstack((X1[:, i].reshape(-1, 1), X2[:, i].reshape(-1, 1)))
            vals[:, i] = model.predict(this_X)

        plt.contour(X1, X2, vals, [0, 1], color='blue')
        plt.show() 
開發者ID:lawlite19,項目名稱:MachineLearning_Python,代碼行數:24,代碼來源:SVM_scikit-learn.py

示例4: visualizeFit

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def visualizeFit(X,mu,sigma2):
    x = np.arange(0, 36, 0.5) # 0-36,步長0.5
    y = np.arange(0, 36, 0.5)
    X1,X2 = np.meshgrid(x,y)  # 要畫等高線,所以meshgird
    Z = multivariateGaussian(np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))), mu, sigma2)  # 計算對應的高斯分布函數
    Z = Z.reshape(X1.shape)  # 調整形狀
    plt.plot(X[:,0],X[:,1],'bx')
    
    if np.sum(np.isinf(Z).astype(float)) == 0:   # 如果計算的為無窮,就不用畫了
        #plt.contourf(X1,X2,Z,10.**np.arange(-20, 0, 3),linewidth=.5)
        CS = plt.contour(X1,X2,Z,10.**np.arange(-20, 0, 3),color='black',linewidth=.5)   # 畫等高線,Z的值在10.**np.arange(-20, 0, 3)
        #plt.clabel(CS)
            
    plt.show()

# 選擇最優的epsilon,即:使F1Score最大 
開發者ID:lawlite19,項目名稱:MachineLearning_Python,代碼行數:18,代碼來源:AnomalyDetection.py

示例5: test_collection

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_collection():
    x, y = np.meshgrid(np.linspace(0, 10, 150), np.linspace(-5, 5, 100))
    data = np.sin(x) + np.cos(y)
    cs = plt.contour(data)
    pe = [path_effects.PathPatchEffect(edgecolor='black', facecolor='none',
                                       linewidth=12),
          path_effects.Stroke(linewidth=5)]

    for collection in cs.collections:
        collection.set_path_effects(pe)

    for text in plt.clabel(cs, colors='white'):
        text.set_path_effects([path_effects.withStroke(foreground='k',
                                                       linewidth=3)])
        text.set_bbox({'boxstyle': 'sawtooth', 'facecolor': 'none',
                       'edgecolor': 'blue'}) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:18,代碼來源:test_patheffects.py

示例6: test_contour_shape_mismatch_3

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_shape_mismatch_3():

    x = np.arange(10)
    y = np.arange(10)
    xg, yg = np.meshgrid(x, y)
    z = np.random.random((9, 10))

    fig = plt.figure()
    ax = fig.add_subplot(111)

    try:
        ax.contour(xg, y, z)
    except TypeError as exc:
        assert exc.args[0] == 'Number of dimensions of x and y should match.'

    try:
        ax.contour(x, yg, z)
    except TypeError as exc:
        assert exc.args[0] == 'Number of dimensions of x and y should match.' 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:21,代碼來源:test_contour.py

示例7: test_contour_shape_mismatch_4

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_shape_mismatch_4():

    g = np.random.random((9, 10))
    b = np.random.random((9, 9))
    z = np.random.random((9, 10))

    fig = plt.figure()
    ax = fig.add_subplot(111)

    try:
        ax.contour(b, g, z)
    except TypeError as exc:
        print(exc.args[0])
        assert re.match(
            r'Shape of x does not match that of z: ' +
            r'found \(9L?, 9L?\) instead of \(9L?, 10L?\)\.',
            exc.args[0]) is not None

    try:
        ax.contour(g, b, z)
    except TypeError as exc:
        assert re.match(
            r'Shape of y does not match that of z: ' +
            r'found \(9L?, 9L?\) instead of \(9L?, 10L?\)\.',
            exc.args[0]) is not None 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:27,代碼來源:test_contour.py

示例8: test_given_colors_levels_and_extends

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_given_colors_levels_and_extends():
    _, axes = plt.subplots(2, 4)

    data = np.arange(12).reshape(3, 4)

    colors = ['red', 'yellow', 'pink', 'blue', 'black']
    levels = [2, 4, 8, 10]

    for i, ax in enumerate(axes.flatten()):
        plt.sca(ax)

        filled = i % 2 == 0.
        extend = ['neither', 'min', 'max', 'both'][i // 2]

        if filled:
            last_color = -1 if extend in ['min', 'max'] else None
            plt.contourf(data, colors=colors[:last_color], levels=levels,
                         extend=extend)
        else:
            last_level = -1 if extend == 'both' else None
            plt.contour(data, colors=colors, levels=levels[:last_level],
                        extend=extend)

        plt.colorbar() 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:26,代碼來源:test_contour.py

示例9: test_contour_datetime_axis

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_datetime_axis():
    fig = plt.figure()
    fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
    base = datetime.datetime(2013, 1, 1)
    x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
    y = np.arange(20)
    z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
    z = z1 * z2
    plt.subplot(221)
    plt.contour(x, y, z)
    plt.subplot(222)
    plt.contourf(x, y, z)
    x = np.repeat(x[np.newaxis], 20, axis=0)
    y = np.repeat(y[:, np.newaxis], 20, axis=1)
    plt.subplot(223)
    plt.contour(x, y, z)
    plt.subplot(224)
    plt.contourf(x, y, z)
    for ax in fig.get_axes():
        for label in ax.get_xticklabels():
            label.set_ha('right')
            label.set_rotation(30) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:24,代碼來源:test_contour.py

示例10: test_labels

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_labels():
    # Adapted from pylab_examples example code: contour_demo.py
    # see issues #2475, #2843, and #2818 for explanation
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
    Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
    # difference of Gaussians
    Z = 10.0 * (Z2 - Z1)

    fig, ax = plt.subplots(1, 1)
    CS = ax.contour(X, Y, Z)
    disp_units = [(216, 177), (359, 290), (521, 406)]
    data_units = [(-2, .5), (0, -1.5), (2.8, 1)]

    CS.clabel()

    for x, y in data_units:
        CS.add_label_near(x, y, inline=True, transform=None)

    for x, y in disp_units:
        CS.add_label_near(x, y, inline=True, transform=False) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:26,代碼來源:test_contour.py

示例11: Pcolor

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
    """Makes a pseudocolor plot.
    
    xs:
    ys:
    zs:
    pcolor: boolean, whether to make a pseudocolor plot
    contour: boolean, whether to make a contour plot
    options: keyword args passed to plt.pcolor and/or plt.contour
    """
    _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)

    X, Y = np.meshgrid(xs, ys)
    Z = zs

    x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
    axes = plt.gca()
    axes.xaxis.set_major_formatter(x_formatter)

    if pcolor:
        plt.pcolormesh(X, Y, Z, **options)

    if contour:
        cs = plt.contour(X, Y, Z, **options)
        plt.clabel(cs, inline=1, fontsize=10) 
開發者ID:Notabela,項目名稱:Lie_to_me,代碼行數:27,代碼來源:thinkplot.py

示例12: test_contour_shape_mismatch_3

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_shape_mismatch_3():

    x = np.arange(10)
    y = np.arange(10)
    xg, yg = np.meshgrid(x, y)
    z = np.random.random((9, 10))

    fig, ax = plt.subplots()

    with pytest.raises(TypeError) as excinfo:
        ax.contour(xg, y, z)
    excinfo.match(r'Number of dimensions of x and y should match.')

    with pytest.raises(TypeError) as excinfo:
        ax.contour(x, yg, z)
    excinfo.match(r'Number of dimensions of x and y should match.') 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:18,代碼來源:test_contour.py

示例13: test_contour_shape_mismatch_4

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_shape_mismatch_4():

    g = np.random.random((9, 10))
    b = np.random.random((9, 9))
    z = np.random.random((9, 10))

    fig, ax = plt.subplots()

    with pytest.raises(TypeError) as excinfo:
        ax.contour(b, g, z)
    excinfo.match(r'Shape of x does not match that of z: found \(9L?, 9L?\) ' +
                  r'instead of \(9L?, 10L?\)')

    with pytest.raises(TypeError) as excinfo:
        ax.contour(g, b, z)
    excinfo.match(r'Shape of y does not match that of z: found \(9L?, 9L?\) ' +
                  r'instead of \(9L?, 10L?\)') 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:19,代碼來源:test_contour.py

示例14: test_contour_badlevel_fmt

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def test_contour_badlevel_fmt():
    # test funny edge case from
    # https://github.com/matplotlib/matplotlib/issues/9742
    # User supplied fmt for each level as a dictionary, but
    # MPL changed the level to the minimum data value because
    # no contours possible.
    # This would error out pre
    # https://github.com/matplotlib/matplotlib/pull/9743
    x = np.arange(9)
    z = np.zeros((9, 9))

    fig, ax = plt.subplots()
    fmt = {1.: '%1.2f'}
    with pytest.warns(UserWarning) as record:
        cs = ax.contour(x, x, z, levels=[1.])
        ax.clabel(cs, fmt=fmt)
    assert len(record) == 1 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:19,代碼來源:test_contour.py

示例15: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import contour [as 別名]
def plot(self, zmin=-1.5, zmax=1.5, step=0.25, linewidth=1, linestyle=':'):
        """Plots the field magnitude."""

        if linewidth is None:
            linewidth = matplotlib.rcParams['lines.linewidth']

        x, y = meshgrid(
            linspace(XMIN/ZOOM+XOFFSET, XMAX/ZOOM+XOFFSET, 200),
            linspace(YMIN/ZOOM, YMAX/ZOOM, 200))
        z = zeros_like(x)
        for i in range(x.shape[0]):
            for j in range(x.shape[1]):
                # pylint: disable=unsupported-assignment-operation
                z[i, j] = self.magnitude([x[i, j], y[i, j]])
        # levels = arange(nmin, nmax+0.2, 0.2)
        # cmap = pyplot.cm.get_cmap('plasma')
        pyplot.contour(x, y, z, numpy.arange(zmin, zmax+step, step),
                       linewidths=linewidth, linestyles=linestyle, colors='k')


# pylint: disable=too-few-public-methods 
開發者ID:tomduck,項目名稱:electrostatics,代碼行數:23,代碼來源:electrostatics.py


注:本文中的matplotlib.pyplot.contour方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。