本文整理匯總了Python中matplotlib.pyplot.colorbar方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.colorbar方法的具體用法?Python pyplot.colorbar怎麽用?Python pyplot.colorbar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.colorbar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: visualize_sampling
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def visualize_sampling(self,permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
# Heatmap of attention (x=cities; y=steps)
示例2: visualize_sampling
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def visualize_sampling(self, permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
示例3: plot_attention
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plot_attention(sentences, attentions, labels, **kwargs):
fig, ax = plt.subplots(**kwargs)
im = ax.imshow(attentions, interpolation='nearest',
vmin=attentions.min(), vmax=attentions.max())
plt.colorbar(im, shrink=0.5, ticks=[0, 1])
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
ax.set_yticks(range(len(labels)))
ax.set_yticklabels(labels, fontproperties=getChineseFont())
# Loop over data dimensions and create text annotations.
for i in range(attentions.shape[0]):
for j in range(attentions.shape[1]):
text = ax.text(j, i, sentences[i][j],
ha="center", va="center", color="b", size=10,
fontproperties=getChineseFont())
ax.set_title("Attention Visual")
fig.tight_layout()
plt.show()
示例4: generate_png_chess_dp_vertex
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def generate_png_chess_dp_vertex(self):
"""Produces pictures of the dominant product vertex a chessboard convention"""
import matplotlib.pylab as plt
plt.ioff()
dab2v = self.get_dp_vertex_doubly_sparse()
for i, ab in enumerate(dab2v):
fname = "chess-v-{:06d}.png".format(i)
print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname)
if type(ab) != 'numpy.ndarray': ab = ab.toarray()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean)
plt.colorbar()
plt.savefig(fname)
plt.close(fig)
示例5: test_interpolate_grid_const_nn
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def test_interpolate_grid_const_nn(self, sphere3_msh):
data = sphere3_msh.elm.tag1
f = mesh_io.ElementData(data, mesh=sphere3_msh)
n = (200, 10, 1)
affine = np.array([[1, 0, 0, -100.5],
[0, 1, 0, -5],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=float)
interp = f.interpolate_to_grid(n, affine, method='assign')
'''
import matplotlib.pyplot as plt
plt.imshow(np.squeeze(interp))
plt.colorbar()
plt.show()
assert False
'''
assert np.isclose(interp[100, 5, 0], 3)
assert np.isclose(interp[187, 5, 0], 4)
assert np.isclose(interp[193, 5, 0], 5)
assert np.isclose(interp[198, 5, 0], 0)
示例6: test_interpolate_grid_rotate_nn
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def test_interpolate_grid_rotate_nn(self, sphere3_msh):
data = np.zeros(sphere3_msh.elm.nr)
b = sphere3_msh.elements_baricenters().value
f = mesh_io.ElementData(data, mesh=sphere3_msh)
# Assign quadrant numbers
f.value[(b[:, 0] > 0) * (b[:, 1] > 0)] = 1.
f.value[(b[:, 0] < 0) * (b[:, 1] > 0)] = 2.
f.value[(b[:, 0] < 0) * (b[:, 1] < 0)] = 3.
f.value[(b[:, 0] > 0) * (b[:, 1] < 0)] = 4.
n = (200, 200, 1)
affine = np.array([[np.cos(np.pi/4.), np.sin(np.pi/4.), 0, -141],
[-np.sin(np.pi/4.), np.cos(np.pi/4.), 0, 0],
[0, 0, 1, .5],
[0, 0, 0, 1]], dtype=float)
interp = f.interpolate_to_grid(n, affine, method='assign')
'''
import matplotlib.pyplot as plt
plt.imshow(np.squeeze(interp))
plt.colorbar()
plt.show()
'''
assert np.isclose(interp[190, 100, 0], 4)
assert np.isclose(interp[100, 190, 0], 1)
assert np.isclose(interp[10, 100, 0], 2)
assert np.isclose(interp[100, 10, 0], 3)
示例7: test_interpolate_grid_rotate_nodedata
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def test_interpolate_grid_rotate_nodedata(self, sphere3_msh):
data = np.zeros(sphere3_msh.nodes.nr)
b = sphere3_msh.nodes.node_coord.copy()
f = mesh_io.NodeData(data, mesh=sphere3_msh)
# Assign quadrant numbers
f.value[(b[:, 0] >= 0) * (b[:, 1] >= 0)] = 1.
f.value[(b[:, 0] <= 0) * (b[:, 1] >= 0)] = 2.
f.value[(b[:, 0] <= 0) * (b[:, 1] <= 0)] = 3.
f.value[(b[:, 0] >= 0) * (b[:, 1] <= 0)] = 4.
n = (200, 200, 1)
affine = np.array([[np.cos(np.pi/4.), np.sin(np.pi/4.), 0, -141],
[-np.sin(np.pi/4.), np.cos(np.pi/4.), 0, 0],
[0, 0, 1, .5],
[0, 0, 0, 1]], dtype=float)
interp = f.interpolate_to_grid(n, affine)
'''
import matplotlib.pyplot as plt
plt.imshow(np.squeeze(interp), interpolation='nearest')
plt.colorbar()
plt.show()
'''
assert np.isclose(interp[190, 100, 0], 4)
assert np.isclose(interp[100, 190, 0], 1)
assert np.isclose(interp[10, 100, 0], 2)
assert np.isclose(interp[100, 10, 0], 3)
示例8: test_interpolate_grid_elmdata_linear
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def test_interpolate_grid_elmdata_linear(self, sphere3_msh):
data = sphere3_msh.elements_baricenters().value[:, 0]
f = mesh_io.ElementData(data, mesh=sphere3_msh)
n = (130, 130, 1)
affine = np.array([[1, 0, 0, -65],
[0, 1, 0, -65],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=float)
X, _ = np.meshgrid(np.arange(130), np.arange(130), indexing='ij')
interp = f.interpolate_to_grid(n, affine, method='linear', continuous=True)
'''
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(np.squeeze(interp))
plt.colorbar()
plt.show()
'''
assert np.allclose(interp[:, :, 0], X - 64.5, atol=1)
示例9: test_interpolate_grid_elmdata_dicontinuous
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def test_interpolate_grid_elmdata_dicontinuous(self, sphere3_msh):
data = sphere3_msh.elm.tag1
f = mesh_io.ElementData(data, mesh=sphere3_msh)
n = (200, 130, 1)
affine = np.array([[1, 0, 0, -100.1],
[0,-1, 0, 65.1],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=float)
interp = f.interpolate_to_grid(n, affine, method='linear', continuous=False)
'''
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(np.squeeze(interp))
plt.colorbar()
plt.show()
'''
assert np.allclose(interp[6:10, 65, 0], 5, atol=1e-1)
assert np.allclose(interp[11:15, 65, 0], 4, atol=1e-1)
assert np.allclose(interp[16:100, 65, 0], 3, atol=1e-1)
示例10: plotNNFilter
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Epochs
示例11: plotNNFilter
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
示例12: plotNNFilter
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例13: plotNNFilterOverlay
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
示例14: imshow
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def imshow(data, which, levels):
"""
Display order book data as an image, where order book data is either of
`df_price` or `df_volume` returned by `load_hdf5` or `load_postgres`.
"""
if which == 'prices':
idx = ['askprc.' + str(i) for i in range(levels, 0, -1)]
idx.extend(['bidprc.' + str(i) for i in range(1, levels + 1, 1)])
elif which == 'volumes':
idx = ['askvol.' + str(i) for i in range(levels, 0, -1)]
idx.extend(['bidvol.' + str(i) for i in range(1, levels + 1, 1)])
plt.imshow(data.loc[:, idx].T, interpolation='nearest', aspect='auto')
plt.yticks(range(0, levels * 2, 1), idx)
plt.colorbar()
plt.tight_layout()
plt.show()
示例15: plot_DOY
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import colorbar [as 別名]
def plot_DOY(dates, y, mpl_cmap):
""" Create a DOY plot
Args:
dates (iterable): sequence of datetime
y (np.ndarray): variable to plot
mpl_cmap (colormap): matplotlib colormap
"""
doy = np.array([d.timetuple().tm_yday for d in dates])
year = np.array([d.year for d in dates])
sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
marker='o', edgecolors='none', s=35)
plt.colorbar(sp)
months = mpl.dates.MonthLocator() # every month
months_fmrt = mpl.dates.DateFormatter('%b')
plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
plt.axes().xaxis.set_minor_locator(months)
plt.axes().xaxis.set_minor_formatter(months_fmrt)
plt.xlim(1, 366)
plt.xlabel('Day of Year')