本文整理匯總了Python中matplotlib.pyplot.close方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.close方法的具體用法?Python pyplot.close怎麽用?Python pyplot.close使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.close方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_emg_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def test_emg_plot():
sampling_rate = 1000
emg = nk.emg_simulate(duration=10, sampling_rate=1000, burst_number=3)
emg_summary, _ = nk.emg_process(emg, sampling_rate=sampling_rate)
# Plot data over samples.
nk.emg_plot(emg_summary)
# This will identify the latest figure.
fig = plt.gcf()
assert len(fig.axes) == 2
titles = ["Raw and Cleaned Signal", "Muscle Activation"]
for (ax, title) in zip(fig.get_axes(), titles):
assert ax.get_title() == title
assert fig.get_axes()[1].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks())
plt.close(fig)
# Plot data over time.
nk.emg_plot(emg_summary, sampling_rate=sampling_rate)
# This will identify the latest figure.
fig = plt.gcf()
assert fig.get_axes()[1].get_xlabel() == "Time (seconds)"
示例2: __init__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def __init__(self, title, varieties, data_points, attrs,
anim=False, data_func=None, is_headless=False):
global anim_func
plt.close()
self.legend = ["Type"]
self.title = title
# self.anim = anim
# self.data_func = data_func
for i in varieties:
data_points = len(varieties[i]["data"])
break
self.headless = is_headless
self.draw_graph(data_points, varieties, attrs)
# if anim and not self.headless:
# anim_func = animation.FuncAnimation(self.fig,
# self.update_plot,
# frames=1000,
# interval=500,
# blit=False)
示例3: plot_alignment
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def plot_alignment(alignment, gs, dir=hp.logdir):
"""Plots the alignment.
Args:
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
gs: (int) global step.
dir: Output path.
"""
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('{} Steps'.format(gs))
plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
plt.close(fig)
示例4: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def plot(PDF, figName, imgpath, show=False, save=True):
# plot
output = PDF.get_constraint_value()
plt.plot(PDF.experimentalDistances,PDF.experimentalPDF, 'ro', label="experimental", markersize=7.5, markevery=1 )
plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth=3.0, markevery=25, label="total" )
styleIndex = 0
for key in output:
val = output[key]
if key in ("pdf_total", "pdf"):
continue
elif "inter" in key:
plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery=5, label=key.split('rdf_inter_')[1] )
styleIndex+=1
plt.legend(frameon=False, ncol=1)
# set labels
plt.title("$\\chi^{2}=%.6f$"%PDF.squaredDeviations, size=20)
plt.xlabel("$r (\AA)$", size=20)
plt.ylabel("$g(r)$", size=20)
# show plot
if save: plt.savefig(figName)
if show: plt.show()
plt.close()
示例5: save_d_at_t
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def save_d_at_t(outputs, global_step, output_dir, metric_summary, N):
"""Save distance to goal at all time steps.
Args:
outputs : [gt_dist_to_goal].
global_step : number of iterations.
output_dir : output directory.
metric_summary : to append scalars to summary.
N : number of outputs to process.
"""
d_at_t = np.concatenate(map(lambda x: x[0][:,:,0]*1, outputs), axis=0)
fig, axes = utils.subplot(plt, (1,1), (5,5))
axes.plot(np.arange(d_at_t.shape[1]), np.mean(d_at_t, axis=0), 'r.')
axes.set_xlabel('time step')
axes.set_ylabel('dist to next goal')
axes.grid('on')
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.pkl'.format(global_step))
utils.save_variables(file_name, [d_at_t], ['d_at_t'], overwrite=True)
plt.close(fig)
return None
示例6: plot_images
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
# Plots training images overlaid with targets
imgs = imgs.cpu().numpy()
targets = targets.cpu().numpy()
# targets = targets[targets[:, 1] == 21] # plot only one class
fig = plt.figure(figsize=(10, 10))
bs, _, h, w = imgs.shape # batch size, _, height, width
bs = min(bs, 16) # limit plot to 16 images
ns = np.ceil(bs ** 0.5) # number of subplots
for i in range(bs):
boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
boxes[[0, 2]] *= w
boxes[[1, 3]] *= h
plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
plt.axis('off')
if paths is not None:
s = Path(paths[i]).name
plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters
fig.tight_layout()
fig.savefig(fname, dpi=200)
plt.close()
示例7: plot_some_results
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def plot_some_results(pred_fn, test_generator, n_images=10):
fig_ctr = 0
for data, seg in test_generator:
res = pred_fn(data)
for d, s, r in zip(data, seg, res):
plt.figure(figsize=(12, 6))
plt.subplot(1, 3, 1)
plt.imshow(d.transpose(1,2,0))
plt.title("input patch")
plt.subplot(1, 3, 2)
plt.imshow(s[0])
plt.title("ground truth")
plt.subplot(1, 3, 3)
plt.imshow(r)
plt.title("segmentation")
plt.savefig("road_segmentation_result_%03.0f.png"%fig_ctr)
plt.close()
fig_ctr += 1
if fig_ctr > n_images:
break
示例8: classify
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def classify(self, features, show=False):
recs, _ = features.shape
result_shape = (features.shape[0], len(self.root))
scores = np.zeros(result_shape)
print scores.shape
R = Record(np.arange(recs, dtype=int), features)
for i, T in enumerate(self.root):
for idxs, result in classify(T, R):
for idx in idxs.indexes():
scores[idx, i] = float(result[0]) / sum(result.values())
if show:
plt.cla()
plt.clf()
plt.close()
plt.imshow(scores, cmap=plt.cm.gray)
plt.title('Scores matrix')
plt.savefig(r"../scratch/tree_scores.png", bbox_inches='tight')
return scores
示例9: notify
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def notify(self, algorithm, **kwargs):
if algorithm.n_gen == 1 or algorithm.n_gen % self.nth_gen == 0:
try:
ret = self.do(algorithm.problem, algorithm, **kwargs)
if self.do_show:
plt.show()
if self.video is not None:
self.video.record()
if self.do_close:
plt.close()
return ret
except Exception as ex:
if self.exception_if_not_applicable:
raise ex
示例10: _render_price
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def _render_price(self, step_range, times, current_step):
self.price_ax.clear()
# Plot price using candlestick graph from mpl_finance
self.price_ax.plot(times, self.df['close'].values[step_range], color="black")
last_time = self.df.index.values[current_step]
last_close = self.df['close'].values[current_step]
last_high = self.df['high'].values[current_step]
# Print the current price to the price axis
self.price_ax.annotate('{0:.2f}'.format(last_close), (last_time, last_close),
xytext=(last_time, last_high),
bbox=dict(boxstyle='round',
fc='w', ec='k', lw=1),
color="black",
fontsize="small")
# Shift price axis up to give volume chart space
ylim = self.price_ax.get_ylim()
self.price_ax.set_ylim(ylim[0] - (ylim[1] - ylim[0]) * VOLUME_CHART_HEIGHT, ylim[1])
示例11: _render_trades
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def _render_trades(self, step_range, trades):
trades = [trade for sublist in trades.values() for trade in sublist]
for trade in trades:
if trade.step in range(sys.maxsize)[step_range]:
date = self.df.index.values[trade.step]
close = self.df['close'].values[trade.step]
color = 'green'
if trade.side is TradeSide.SELL:
color = 'red'
self.price_ax.annotate(' ', (date, close),
xytext=(date, close),
size="large",
arrowprops=dict(arrowstyle='simple', facecolor=color))
示例12: generate_png_chess_dp_vertex
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def generate_png_chess_dp_vertex(self):
"""Produces pictures of the dominant product vertex a chessboard convention"""
import matplotlib.pylab as plt
plt.ioff()
dab2v = self.get_dp_vertex_doubly_sparse()
for i, ab in enumerate(dab2v):
fname = "chess-v-{:06d}.png".format(i)
print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname)
if type(ab) != 'numpy.ndarray': ab = ab.toarray()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean)
plt.colorbar()
plt.savefig(fname)
plt.close(fig)
示例13: plot_species
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def plot_species(statistics, view=False, filename='speciation.svg'):
""" Visualizes speciation throughout evolution. """
if plt is None:
warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
return
species_sizes = statistics.get_species_sizes()
num_generations = len(species_sizes)
curves = np.array(species_sizes).T
fig, ax = plt.subplots()
ax.stackplot(range(num_generations), *curves)
plt.title("Speciation")
plt.ylabel("Size per Species")
plt.xlabel("Generations")
plt.savefig(filename)
if view:
plt.show()
plt.close()
示例14: test_eog_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def test_eog_plot():
eog_signal = nk.data("eog_200hz")["vEOG"]
signals, info = nk.eog_process(eog_signal, sampling_rate=200)
# Plot
nk.eog_plot(signals)
fig = plt.gcf()
assert len(fig.axes) == 2
titles = ["Raw and Cleaned Signal", "Blink Rate"]
legends = [["Raw", "Cleaned", "Blinks"], ["Rate", "Mean"]]
ylabels = ["Amplitude (mV)", "Blinks per minute"]
for (ax, title, legend, ylabel) in zip(fig.get_axes(), titles, legends, ylabels):
assert ax.get_title() == title
subplot = ax.get_legend_handles_labels()
assert subplot[1] == legend
assert ax.get_ylabel() == ylabel
assert fig.get_axes()[1].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks())
plt.close(fig)
示例15: test_eda_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import close [as 別名]
def test_eda_plot():
sampling_rate = 1000
eda = nk.eda_simulate(duration=30, sampling_rate=sampling_rate, scr_number=6, noise=0, drift=0.01, random_state=42)
eda_summary, _ = nk.eda_process(eda, sampling_rate=sampling_rate)
# Plot data over samples.
nk.eda_plot(eda_summary)
# This will identify the latest figure.
fig = plt.gcf()
assert len(fig.axes) == 3
titles = ["Raw and Cleaned Signal", "Skin Conductance Response (SCR)", "Skin Conductance Level (SCL)"]
for (ax, title) in zip(fig.get_axes(), titles):
assert ax.get_title() == title
assert fig.get_axes()[2].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks(), fig.axes[2].get_xticks())
plt.close(fig)
# Plot data over seconds.
nk.eda_plot(eda_summary, sampling_rate=sampling_rate)
# This will identify the latest figure.
fig = plt.gcf()
assert fig.get_axes()[2].get_xlabel() == "Seconds"