當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.clf方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.clf方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.clf方法的具體用法?Python pyplot.clf怎麽用?Python pyplot.clf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.clf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: classify

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def classify(self, features, show=False):
        recs, _ = features.shape
        result_shape = (features.shape[0], len(self.root))
        scores = np.zeros(result_shape)
        print scores.shape
        R = Record(np.arange(recs, dtype=int), features)

        for i, T in enumerate(self.root):
            for idxs, result in classify(T, R):
                for idx in idxs.indexes():
                    scores[idx, i] = float(result[0]) / sum(result.values())


        if show:
            plt.cla()
            plt.clf()
            plt.close()

            plt.imshow(scores, cmap=plt.cm.gray)
            plt.title('Scores matrix')
            plt.savefig(r"../scratch/tree_scores.png", bbox_inches='tight')
        
        return scores 
開發者ID:gdanezis,項目名稱:trees,代碼行數:25,代碼來源:malware.py

示例2: plot_precision_recall

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def plot_precision_recall(train_precision, train_recall, val_precision=None, val_recall=None, resume_epoch = 0, nepochs = -1, save_dir=None, online=False, seq_name = None, object_id = -1):
    assert len(range(resume_epoch + 1, nepochs+1)) == len(train_precision)
    xaxis = range(resume_epoch + 1, nepochs+1)
    plt.plot(xaxis, train_precision, label = "train_precision")
    plt.plot(xaxis, train_recall, label = "train_recall")

    if not online:
        plt.plot(xaxis, val_precision, label = "val_precision")
        plt.plot(xaxis, val_recall, label = "val_recall")

    plt.legend()

    if online:
        plt.savefig(os.path.join(save_dir, 'plots', seq_name, str(object_id),'accuracies.png'))
    else:
        plt.savefig(os.path.join(save_dir, 'plots', 'accuracies.png'))

    plt.clf() 
開發者ID:omkar13,項目名稱:MaskTrack,代碼行數:20,代碼來源:utility_functions.py

示例3: plot_images_grid

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def plot_images_grid(x: torch.tensor, export_img, title: str = '', nrow=8, padding=2, normalize=False, pad_value=0):
    """Plot 4D Tensor of images of shape (B x C x H x W) as a grid."""

    grid = make_grid(x, nrow=nrow, padding=padding, normalize=normalize, pad_value=pad_value)
    npgrid = grid.cpu().numpy()

    plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')

    ax = plt.gca()
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)

    if not (title == ''):
        plt.title(title)

    plt.savefig(export_img, bbox_inches='tight', pad_inches=0.1)
    plt.clf() 
開發者ID:lukasruff,項目名稱:Deep-SAD-PyTorch,代碼行數:19,代碼來源:plot_images_grid.py

示例4: plot_wcc_distribution

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def plot_wcc_distribution(_g, _plot_img):
    """Plot weakly connected components size distributions
    :param _g: Transaction graph
    :param _plot_img: WCC size distribution image (log-log plot)
    :return:
    """
    all_wcc = nx.weakly_connected_components(_g)
    wcc_sizes = Counter([len(wcc) for wcc in all_wcc])
    size_seq = sorted(wcc_sizes.keys())
    size_hist = [wcc_sizes[x] for x in size_seq]

    plt.figure(figsize=(16, 12))
    plt.clf()
    plt.loglog(size_seq, size_hist, 'ro-')
    plt.title("WCC Size Distribution")
    plt.xlabel("Size")
    plt.ylabel("Number of WCCs")
    plt.savefig(_plot_img) 
開發者ID:IBM,項目名稱:AMLSim,代碼行數:20,代碼來源:plot_distributions.py

示例5: drawComplex

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def drawComplex(data, ph, axes=[-6, 8, -6, 6]):
    plt.clf()
    plt.axis(axes)  # axes = [x1, x2, y1, y2]
    plt.scatter(data[:, 0], data[:, 1])  # plotting just for clarity
    for i, txt in enumerate(data):
        plt.annotate(i, (data[i][0] + 0.05, data[i][1]))  # add labels

    # add lines for edges
    for edge in [e for e in ph.ripsComplex if len(e) == 2]:
        # print(edge)
        pt1, pt2 = [data[pt] for pt in [n for n in edge]]
        # plt.gca().add_line(plt.Line2D(pt1,pt2))
        line = plt.Polygon([pt1, pt2], closed=None, fill=None, edgecolor='r')
        plt.gca().add_line(line)

    # add triangles
    for triangle in [t for t in ph.ripsComplex if len(t) == 3]:
        pt1, pt2, pt3 = [data[pt] for pt in [n for n in triangle]]
        line = plt.Polygon([pt1, pt2, pt3], closed=False,
                           color="blue", alpha=0.3, fill=True, edgecolor=None)
        plt.gca().add_line(line)
    plt.show() 
開發者ID:outlace,項目名稱:OpenTDA,代碼行數:24,代碼來源:plotting.py

示例6: drawComplex

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
  plt.clf()
  plt.axis(axes)
  plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
  for i, txt in enumerate(origData):
      plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels

  #add lines for edges
  for edge in [e for e in ripsComplex if len(e)==2]:
      #print(edge)
      pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
      #plt.gca().add_line(plt.Line2D(pt1,pt2))
      line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
      plt.gca().add_line(line)

  #add triangles
  for triangle in [t for t in ripsComplex if len(t)==3]:
      pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
      line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
      plt.gca().add_line(line)
  plt.show() 
開發者ID:outlace,項目名稱:OpenTDA,代碼行數:23,代碼來源:SimplicialComplex.py

示例7: plot_durations

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def plot_durations(episode_durations):
    plt.ion()
    plt.figure(2)
    plt.clf()
    duration_t = torch.FloatTensor(episode_durations)
    plt.title('Training')
    plt.xlabel('Episodes')
    plt.ylabel('Duration')
    plt.plot(duration_t.numpy())

    if len(duration_t) >= 100:
        means = duration_t.unfold(0,100,1).mean(1).view(-1)
        means = torch.cat((torch.zeros(99), means))
        plt.plot(means.numpy())

    plt.pause(0.00001) 
開發者ID:sweetice,項目名稱:Deep-reinforcement-learning-with-pytorch,代碼行數:18,代碼來源:naive-policy-gradient.py

示例8: image

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def image(path: str, costs: Dict[str, int]) -> str:
    ys = ['0', '1', '2', '3', '4', '5', '6', '7+', 'X']
    xs = [costs.get(k, 0) for k in ys]
    sns.set_style('white')
    sns.set(font='Concourse C3', font_scale=3)
    g = sns.barplot(ys, xs, palette=['#cccccc'] * len(ys))
    g.axes.yaxis.set_ticklabels([])
    rects = g.patches
    sns.set(font='Concourse C3', font_scale=2)
    for rect, label in zip(rects, xs):
        if label == 0:
            continue
        height = rect.get_height()
        g.text(rect.get_x() + rect.get_width()/2, height + 0.5, label, ha='center', va='bottom')
    g.margins(y=0, x=0)
    sns.despine(left=True, bottom=True)
    g.get_figure().savefig(path, transparent=True, pad_inches=0, bbox_inches='tight')
    plt.clf() # Clear all data from matplotlib so it does not persist across requests.
    return path 
開發者ID:PennyDreadfulMTG,項目名稱:Penny-Dreadful-Tools,代碼行數:21,代碼來源:chart.py

示例9: visualize_transform

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def visualize_transform(
    potential_or_samples, prior_sample, prior_density, transform=None, inverse_transform=None, samples=True, npts=100,
    memory=100, device="cpu"
):
    """Produces visualization for the model density and samples from the model."""
    plt.clf()
    ax = plt.subplot(1, 3, 1, aspect="equal")
    if samples:
        plt_samples(potential_or_samples, ax, npts=npts)
    else:
        plt_potential_func(potential_or_samples, ax, npts=npts)

    ax = plt.subplot(1, 3, 2, aspect="equal")
    if inverse_transform is None:
        plt_flow(prior_density, transform, ax, npts=npts, device=device)
    else:
        plt_flow_density(prior_density, inverse_transform, ax, npts=npts, memory=memory, device=device)

    ax = plt.subplot(1, 3, 3, aspect="equal")
    if transform is not None:
        plt_flow_samples(prior_sample, transform, ax, npts=npts, memory=memory, device=device) 
開發者ID:rtqichen,項目名稱:residual-flows,代碼行數:23,代碼來源:visualize_flow.py

示例10: plot_loss

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def plot_loss(train_losses, dev_losses, steps, save_path):
    """Save history of training & dev loss as figure.
    Args:
        train_losses (list): train losses
        dev_losses (list): dev losses
        steps (list): steps
    """
    # Save as csv file
    loss_graph = np.column_stack((steps, train_losses, dev_losses))
    if os.path.isfile(os.path.join(save_path, "ler.csv")):
        os.remove(os.path.join(save_path, "ler.csv"))
    np.savetxt(os.path.join(save_path, "loss.csv"), loss_graph, delimiter=",")

    # TODO: error check for inf loss

    # Plot & save as png file
    plt.clf()
    plt.plot(steps, train_losses, blue, label="Train")
    plt.plot(steps, dev_losses, orange, label="Dev")
    plt.xlabel('step', fontsize=12)
    plt.ylabel('loss', fontsize=12)
    plt.legend(loc="upper right", fontsize=12)
    if os.path.isfile(os.path.join(save_path, "loss.png")):
        os.remove(os.path.join(save_path, "loss.png"))
    plt.savefig(os.path.join(save_path, "loss.png"), dvi=500) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:27,代碼來源:plot.py

示例11: update_plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def update_plot(self, i):
        """
        This is our animation function.
        For line graphs, redraw the whole thing.
        """
        plt.clf()
        (data_points, varieties) = self.data_func()
        self.draw_graph(data_points, varieties)
        self.show() 
開發者ID:gcallah,項目名稱:indras_net,代碼行數:11,代碼來源:display_methods.py

示例12: render

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def render(self):
        # create a grid
        states = [self.state/self.scale]
        indices = np.array([int(self.preprocess(s)) for s in states])
        a = np.zeros(self.grid_size)
        for i in indices:
            a[i] += 1
        max_freq = np.max(a)
        a/=float(max_freq)  # normalize
        a = np.reshape(a, (self.scale, self.scale))
        ax = sns.heatmap(a)
        plt.draw()
        plt.pause(0.001)
        plt.clf() 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:16,代碼來源:pointmass.py

示例13: graph_ROC

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def graph_ROC(max_ACC, TP, FP, name="STD"):
    aTP = np.vstack(TP)
    n = len(TP)
    mean_TP = np.mean(aTP, axis=0)
    stderr_TP = np.std(aTP, axis=0) / (n ** 0.5)
    var_TP = np.var(aTP, axis=0)
    max_TP = mean_TP + 3 * stderr_TP
    min_TP = mean_TP - 3 * stderr_TP

    # sTP = sum(TP) / len(TP)
    sFP = FP[0]
    print len(sFP), len(mean_TP), len(TP[0])
    smax_ACC = np.mean(max_ACC)

    plt.cla()
    plt.clf()
    plt.close()

    plt.plot(sFP, mean_TP)
    plt.fill_between(sFP, min_TP, max_TP, color='black', alpha=0.2)
    plt.xlim((0,0.1))
    plt.ylim((0,1))
    plt.title('ROC Curve (accuracy=%.3f)' % smax_ACC)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.savefig(r"../scratch/"+name+"_ROC_curve.pdf", bbox_inches='tight')

    # Write the data to the file
    f = file(r"../scratch/"+name+"_ROC_curve.csv", "w")
    f.write("FalsePositive,TruePositive,std_err, var, n\n")
    for fp, tp, err, var in zip(sFP, mean_TP, stderr_TP, var_TP):
        f.write("%s, %s, %s, %s, %s\n" % (fp, tp, err, var, n))
    f.close() 
開發者ID:gdanezis,項目名稱:trees,代碼行數:35,代碼來源:malware.py

示例14: ROC

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def ROC(scores, labels, names, name="STD"):

    max_ACC, TP, FP = ROC_data(scores, labels, names, name)
    graph_ROC([max_ACC], [TP], [FP], name)

    #P = len(labels[labels==1])
    #N = len(labels[labels==0])

    ## Save raw results in a file:
    #fr = file(r"../scratch/"+name+"_results.txt","w")
    #for s, l, n in sorted(zip(scores,labels, names), key=lambda x: np.mean(x[0])):
    #    fr.write("%.4f\t%s\t%s\n" % (np.mean(s), int(l), n))
    #fr.close()

    ## Make an ROC curve
    
    # acc_max = "%.2f" % max(ACC)

    #plt.cla()
    #plt.clf()
    #plt.close()

    #plt.plot(FP, TP)
    #plt.xlim((0,0.1))
    #plt.ylim((0,1))
    #plt.title('ROC Curve (accuracy=%.2f)' % max_ACC)
    #plt.xlabel('False Positive Rate')
    #plt.ylabel('True Positive Rate')
    #plt.savefig(r"../scratch/"+name+"_ROC_curve.png", bbox_inches='tight')

    #f = file(r"../scratch/"+name+"_ROC_curve.csv", "w")
    #f.write("FalsePositive,TruePositive,Accuracy\n")
    #for fp, tp, acc in zip(FP,TP, ACC):
    #    f.write("%s,%s,%s\n" % (fp, tp, acc))
    #f.close()



## Read the csv files 
開發者ID:gdanezis,項目名稱:trees,代碼行數:41,代碼來源:malware.py

示例15: visualizedistances

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import clf [as 別名]
def visualizedistances(data, figname=None):
    D, L, N = data
    sorted_indexes = np.argsort(L[:,0])

    D2 = D[sorted_indexes, :]
    D2 = D2[:, sorted_indexes]

    plt.cla()
    plt.clf()
    plt.close()

    plt.imshow(D2, cmap=plt.cm.gray)
    plt.title('Distance matrix')
    plt.savefig(figname, bbox_inches='tight') 
開發者ID:gdanezis,項目名稱:trees,代碼行數:16,代碼來源:malware.py


注:本文中的matplotlib.pyplot.clf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。