本文整理匯總了Python中matplotlib.pyplot.cla方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.cla方法的具體用法?Python pyplot.cla怎麽用?Python pyplot.cla使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.cla方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def main():
args = get_args()
input_paths = [Path(args.input1).joinpath("history.npz")]
if args.input2:
input_paths.append(Path(args.input2).joinpath("history.npz"))
datum = [(np.array(np.load(str(input_path))["history"], ndmin=1)[0], input_path.parent.name)
for input_path in input_paths]
metrics = ["val_loss", "val_PSNR"]
for metric in metrics:
for data, setting_name in datum:
plt.plot(data[metric], label=setting_name)
plt.xlabel("epochs")
plt.ylabel(metric)
plt.legend()
plt.savefig(metric + ".png")
plt.cla()
示例2: vis_detections
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.3):
"""Visual debugging of detections."""
import matplotlib.pyplot as plt
im = im[:, :, (2, 1, 0)]
for i in xrange(np.minimum(10, dets.shape[0])):
bbox = dets[i, :4]
score = dets[i, -1]
if score > thresh:
plt.cla()
plt.imshow(im)
plt.gca().add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='g', linewidth=3)
)
plt.title('{} {:.3f}'.format(class_name, score))
plt.show()
示例3: plot_result_data
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_result_data(acc_total, acc_val_total, loss_total, losss_val_total, cfg_path, epoch):
import matplotlib.pyplot as plt
y = range(epoch)
plt.plot(y,acc_total,linestyle="-", linewidth=1,label='acc_train')
plt.plot(y,acc_val_total,linestyle="-", linewidth=1,label='acc_val')
plt.legend(('acc_train', 'acc_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Acc on dataset")
plt.savefig('{}/acc.png'.format(cfg_path))
plt.cla()
plt.plot(y,loss_total,linestyle="-", linewidth=1,label='loss_train')
plt.plot(y,losss_val_total,linestyle="-", linewidth=1,label='loss_val')
plt.legend(('loss_train', 'loss_val'), loc='upper right')
plt.xlabel("Training Epoch")
plt.ylabel("Loss on dataset")
plt.savefig('{}/loss.png'.format(cfg_path))
示例4: classify
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def classify(self, features, show=False):
recs, _ = features.shape
result_shape = (features.shape[0], len(self.root))
scores = np.zeros(result_shape)
print scores.shape
R = Record(np.arange(recs, dtype=int), features)
for i, T in enumerate(self.root):
for idxs, result in classify(T, R):
for idx in idxs.indexes():
scores[idx, i] = float(result[0]) / sum(result.values())
if show:
plt.cla()
plt.clf()
plt.close()
plt.imshow(scores, cmap=plt.cm.gray)
plt.title('Scores matrix')
plt.savefig(r"../scratch/tree_scores.png", bbox_inches='tight')
return scores
示例5: explore_random_examples
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def explore_random_examples(self, dataset_split):
"""
Visualize random examples for dataset exploration purposes
Parameters
----------
dataset_split: str
Dataset split, can be either 'train' or 'test'
Returns
-------
None
"""
if self.initialized:
subplots = plt.subplots(nrows=1, ncols=2)
for i in np.random.permutation(SmallNORBDataset.n_examples):
self.data[dataset_split][i].show(subplots)
plt.waitforbuttonpress()
plt.cla()
示例6: show_boxes
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def show_boxes(im, dets, classes, scale = 1.0):
plt.cla()
plt.axis("off")
plt.imshow(im)
for cls_idx, cls_name in enumerate(classes):
cls_dets = dets[cls_idx]
for det in cls_dets:
bbox = det[:4] * scale
color = (rand(), rand(), rand())
rect = plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=color, linewidth=2.5)
plt.gca().add_patch(rect)
if cls_dets.shape[1] == 5:
score = det[-1]
plt.gca().text(bbox[0], bbox[1],
'{:s} {:.3f}'.format(cls_name, score),
bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
plt.show()
return im
示例7: vis_detections
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.8):
"""Visual debugging of detections."""
import matplotlib.pyplot as plt
#im = im[:, :, (2, 1, 0)]
for i in xrange(np.minimum(10, dets.shape[0])):
bbox = dets[i, :4]
score = dets[i, -1]
if score > thresh:
#plt.cla()
#plt.imshow(im)
plt.gca().add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='g', linewidth=3)
)
plt.gca().text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=14, color='white')
plt.title('{} {:.3f}'.format(class_name, score))
#plt.show()
示例8: draw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def draw(vmean, vlogstd):
from scipy import stats
plt.cla()
xlimits = [-2, 2]
ylimits = [-4, 2]
def log_prob(z):
z1, z2 = z[:, 0], z[:, 1]
return stats.norm.logpdf(z2, 0, 1.35) + \
stats.norm.logpdf(z1, 0, np.exp(z2))
plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits)
def variational_contour(z):
return stats.multivariate_normal.pdf(
z, vmean, np.diag(np.exp(vlogstd)))
plot_isocontours(ax, variational_contour, xlimits, ylimits)
plt.draw()
plt.pause(1.0 / 30.0)
示例9: keypoint_detection
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def keypoint_detection(img, detector, pose_net, ctx=mx.cpu(), axes=None):
x, img = gcv.data.transforms.presets.yolo.transform_test(img, short=512, max_size=350)
x = x.as_in_context(ctx)
class_IDs, scores, bounding_boxs = detector(x)
plt.cla()
pose_input, upscale_bbox = detector_to_alpha_pose(img, class_IDs, scores, bounding_boxs,
output_shape=(128, 96), ctx=ctx)
if len(upscale_bbox) > 0:
predicted_heatmap = pose_net(pose_input)
pred_coords, confidence = heatmap_to_coord_alpha_pose(predicted_heatmap, upscale_bbox)
axes = plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores,
box_thresh=0.5, keypoint_thresh=0.2, ax=axes)
plt.draw()
plt.pause(0.001)
else:
axes = plot_image(frame, ax=axes)
plt.draw()
plt.pause(0.001)
return axes
示例10: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batchSeriesIdx in range(5):
oneHotOutputSeries = np.array(predictions_series)[:, batchSeriesIdx, :]
singleOutputSeries = np.array([(1 if out[0] < 0.5 else 0) for out in oneHotOutputSeries])
plt.subplot(2, 3, batchSeriesIdx + 2)
plt.cla()
plt.axis([0, backpropagationLength, 0, 2])
left_offset = range(backpropagationLength)
plt.bar(left_offset, batchX[batchSeriesIdx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batchSeriesIdx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, singleOutputSeries * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:21,代碼來源:lstm_with_tensorflow.py
示例11: draw_plot_per_item
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def draw_plot_per_item(draw_func, plots_dir=PLOTS_DIR):
"""
每個商品畫一個圖,保存到文件
:param draw_func: 畫圖函數,參數:reviews
:param plots_dir: 保存圖像的文件夾
"""
for item in session.query(Item):
print(item.id, item.title)
filename = '{} {}.png'.format(item.id, item.title)
filename = replace_illegal_chars(filename)
path = plots_dir + '/' + filename
if exists(path):
continue
draw_func(item.reviews)
plt.savefig(path)
plt.cla()
示例12: plot_his
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_his(inputs, inputs_norm):
# plot histogram for the inputs of every layer
for j, all_inputs in enumerate([inputs, inputs_norm]):
for i, input in enumerate(all_inputs):
plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
plt.cla()
if i == 0:
the_range = (-7, 10)
else:
the_range = (-1, 1)
plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
plt.yticks(())
if j == 1:
plt.xticks(the_range)
else:
plt.xticks(())
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
plt.draw()
plt.pause(0.01)
示例13: plot_metrics
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_metrics(values, yAxis, xAxis, title=None, saveTo=None):
colours = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
for i, (train_values, dev_values, metric) in enumerate(values):
plt.plot(map(float, train_values), linewidth=2, color=colours[i],
linestyle='-', label="Train {}".format(metric))
if dev_values:
plt.plot(map(float, dev_values), linewidth=2, color=colours[i],
linestyle='--', label="Dev {}".format(metric))
plt.xlabel(xAxis)
plt.ylabel(yAxis)
if title:
plt.title(title)
if yAxis == "Loss":
plt.legend(loc='upper right', shadow=True, prop={'size': 6})
else:
plt.legend(loc='upper left', shadow=True, prop={'size': 6})
assert saveTo
plt.savefig("{}".format(saveTo))
plt.cla()
plt.clf()
plt.close()
示例14: vis_detections
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.8):
"""Visual debugging of detections."""
import matplotlib.pyplot as plt
#im = im[:, :, (2, 1, 0)]
for i in xrange(np.minimum(10, dets.shape[0])):
bbox = dets[i, :4]
score = dets[i, -1]
if score > thresh:
#plt.cla()
#plt.imshow(im)
plt.gca().add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='g', linewidth=3)
)
plt.gca().text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=14, color='white')
plt.title('{} {:.3f}'.format(class_name, score))
#plt.show()
示例15: keypoint_detection
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def keypoint_detection(img, detector, pose_net, ctx=mx.cpu(), axes=None):
x, img = gcv.data.transforms.presets.yolo.transform_test(img, short=512, max_size=350)
x = x.as_in_context(ctx)
class_IDs, scores, bounding_boxs = detector(x)
plt.cla()
pose_input, upscale_bbox = detector_to_simple_pose(img, class_IDs, scores, bounding_boxs,
output_shape=(128, 96), ctx=ctx)
if len(upscale_bbox) > 0:
predicted_heatmap = pose_net(pose_input)
pred_coords, confidence = heatmap_to_coord(predicted_heatmap, upscale_bbox)
axes = plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores,
box_thresh=0.5, keypoint_thresh=0.2, ax=axes)
plt.draw()
plt.pause(0.001)
else:
axes = plot_image(frame, ax=axes)
plt.draw()
plt.pause(0.001)
return axes