當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.cla方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.cla方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.cla方法的具體用法?Python pyplot.cla怎麽用?Python pyplot.cla使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.cla方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def main():
    args = get_args()
    input_paths = [Path(args.input1).joinpath("history.npz")]

    if args.input2:
        input_paths.append(Path(args.input2).joinpath("history.npz"))

    datum = [(np.array(np.load(str(input_path))["history"], ndmin=1)[0], input_path.parent.name)
             for input_path in input_paths]
    metrics = ["val_loss", "val_PSNR"]

    for metric in metrics:
        for data, setting_name in datum:
            plt.plot(data[metric], label=setting_name)
        plt.xlabel("epochs")
        plt.ylabel(metric)
        plt.legend()
        plt.savefig(metric + ".png")
        plt.cla() 
開發者ID:zxq2233,項目名稱:n2n-watermark-remove,代碼行數:21,代碼來源:plot_history.py

示例2: vis_detections

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.3):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            plt.cla()
            plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.title('{}  {:.3f}'.format(class_name, score))
            plt.show() 
開發者ID:ppengtang,項目名稱:dpl,代碼行數:20,代碼來源:test.py

示例3: plot_result_data

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_result_data(acc_total, acc_val_total, loss_total, losss_val_total, cfg_path, epoch):
    import matplotlib.pyplot as plt
    y = range(epoch)
    plt.plot(y,acc_total,linestyle="-",  linewidth=1,label='acc_train')
    plt.plot(y,acc_val_total,linestyle="-", linewidth=1,label='acc_val')
    plt.legend(('acc_train', 'acc_val'), loc='upper right')
    plt.xlabel("Training Epoch")
    plt.ylabel("Acc on dataset")
    plt.savefig('{}/acc.png'.format(cfg_path))
    plt.cla()
    plt.plot(y,loss_total,linestyle="-", linewidth=1,label='loss_train')
    plt.plot(y,losss_val_total,linestyle="-", linewidth=1,label='loss_val')
    plt.legend(('loss_train', 'loss_val'), loc='upper right')
    plt.xlabel("Training Epoch")
    plt.ylabel("Loss on dataset")
    plt.savefig('{}/loss.png'.format(cfg_path)) 
開發者ID:HaiyangLiu1997,項目名稱:Pytorch-Networks,代碼行數:18,代碼來源:utils.py

示例4: classify

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def classify(self, features, show=False):
        recs, _ = features.shape
        result_shape = (features.shape[0], len(self.root))
        scores = np.zeros(result_shape)
        print scores.shape
        R = Record(np.arange(recs, dtype=int), features)

        for i, T in enumerate(self.root):
            for idxs, result in classify(T, R):
                for idx in idxs.indexes():
                    scores[idx, i] = float(result[0]) / sum(result.values())


        if show:
            plt.cla()
            plt.clf()
            plt.close()

            plt.imshow(scores, cmap=plt.cm.gray)
            plt.title('Scores matrix')
            plt.savefig(r"../scratch/tree_scores.png", bbox_inches='tight')
        
        return scores 
開發者ID:gdanezis,項目名稱:trees,代碼行數:25,代碼來源:malware.py

示例5: explore_random_examples

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def explore_random_examples(self, dataset_split):
        """
        Visualize random examples for dataset exploration purposes
        
        Parameters
        ----------
        dataset_split: str
            Dataset split, can be either 'train' or 'test'

        Returns
        -------
        None
        """
        if self.initialized:
            subplots = plt.subplots(nrows=1, ncols=2)
            for i in np.random.permutation(SmallNORBDataset.n_examples):
                self.data[dataset_split][i].show(subplots)
                plt.waitforbuttonpress()
                plt.cla() 
開發者ID:ndrplz,項目名稱:small_norb,代碼行數:21,代碼來源:dataset.py

示例6: show_boxes

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def show_boxes(im, dets, classes, scale = 1.0):
    plt.cla()
    plt.axis("off")
    plt.imshow(im)
    for cls_idx, cls_name in enumerate(classes):
        cls_dets = dets[cls_idx]
        for det in cls_dets:
            bbox = det[:4] * scale
            color = (rand(), rand(), rand())
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                  bbox[2] - bbox[0],
                                  bbox[3] - bbox[1], fill=False,
                                  edgecolor=color, linewidth=2.5)
            plt.gca().add_patch(rect)

            if cls_dets.shape[1] == 5:
                score = det[-1]
                plt.gca().text(bbox[0], bbox[1],
                               '{:s} {:.3f}'.format(cls_name, score),
                               bbox=dict(facecolor=color, alpha=0.5), fontsize=9, color='white')
    plt.show()
    return im 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:24,代碼來源:show_boxes.py

示例7: vis_detections

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt 
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4] 
        score = dets[i, -1] 
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show() 
開發者ID:CharlesShang,項目名稱:TFFRCNN,代碼行數:25,代碼來源:test.py

示例8: draw

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def draw(vmean, vlogstd):
        from scipy import stats
        plt.cla()
        xlimits = [-2, 2]
        ylimits = [-4, 2]

        def log_prob(z):
            z1, z2 = z[:, 0], z[:, 1]
            return stats.norm.logpdf(z2, 0, 1.35) + \
                stats.norm.logpdf(z1, 0, np.exp(z2))

        plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits)

        def variational_contour(z):
            return stats.multivariate_normal.pdf(
                z, vmean, np.diag(np.exp(vlogstd)))

        plot_isocontours(ax, variational_contour, xlimits, ylimits)
        plt.draw()
        plt.pause(1.0 / 30.0) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:22,代碼來源:toy2d_intractable.py

示例9: keypoint_detection

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def keypoint_detection(img, detector, pose_net, ctx=mx.cpu(), axes=None):
    x, img = gcv.data.transforms.presets.yolo.transform_test(img, short=512, max_size=350)
    x = x.as_in_context(ctx)
    class_IDs, scores, bounding_boxs = detector(x)

    plt.cla()
    pose_input, upscale_bbox = detector_to_alpha_pose(img, class_IDs, scores, bounding_boxs,
                                                       output_shape=(128, 96), ctx=ctx)
    if len(upscale_bbox) > 0:
        predicted_heatmap = pose_net(pose_input)
        pred_coords, confidence = heatmap_to_coord_alpha_pose(predicted_heatmap, upscale_bbox)

        axes = plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores,
                              box_thresh=0.5, keypoint_thresh=0.2, ax=axes)
        plt.draw()
        plt.pause(0.001)
    else:
        axes = plot_image(frame, ax=axes)
        plt.draw()
        plt.pause(0.001)

    return axes 
開發者ID:dmlc,項目名稱:gluon-cv,代碼行數:24,代碼來源:cam_demo.py

示例10: plot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot(loss_list, predictions_series, batchX, batchY):
    plt.subplot(2, 3, 1)
    plt.cla()
    plt.plot(loss_list)

    for batchSeriesIdx in range(5):
        oneHotOutputSeries = np.array(predictions_series)[:, batchSeriesIdx, :]
        singleOutputSeries = np.array([(1 if out[0] < 0.5 else 0) for out in oneHotOutputSeries])

        plt.subplot(2, 3, batchSeriesIdx + 2)
        plt.cla()
        plt.axis([0, backpropagationLength, 0, 2])
        left_offset = range(backpropagationLength)
        plt.bar(left_offset, batchX[batchSeriesIdx, :], width=1, color="blue")
        plt.bar(left_offset, batchY[batchSeriesIdx, :] * 0.5, width=1, color="red")
        plt.bar(left_offset, singleOutputSeries * 0.3, width=1, color="green")

    plt.draw()
    plt.pause(0.0001) 
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:21,代碼來源:lstm_with_tensorflow.py

示例11: draw_plot_per_item

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def draw_plot_per_item(draw_func, plots_dir=PLOTS_DIR):
    """
    每個商品畫一個圖,保存到文件
    :param draw_func: 畫圖函數,參數:reviews
    :param plots_dir: 保存圖像的文件夾
    """

    for item in session.query(Item):
        print(item.id, item.title)

        filename = '{} {}.png'.format(item.id, item.title)
        filename = replace_illegal_chars(filename)
        path = plots_dir + '/' + filename
        if exists(path):
            continue

        draw_func(item.reviews)
        plt.savefig(path)
        plt.cla() 
開發者ID:xfgryujk,項目名稱:TaobaoAnalysis,代碼行數:21,代碼來源:draw_plot.py

示例12: plot_his

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_his(inputs, inputs_norm):
    # plot histogram for the inputs of every layer
    for j, all_inputs in enumerate([inputs, inputs_norm]):
        for i, input in enumerate(all_inputs):
            plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1))
            plt.cla()
            if i == 0:
                the_range = (-7, 10)
            else:
                the_range = (-1, 1)
            plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733')
            plt.yticks(())
            if j == 1:
                plt.xticks(the_range)
            else:
                plt.xticks(())
            ax = plt.gca()
            ax.spines['right'].set_color('none')
            ax.spines['top'].set_color('none')
        plt.title("%s normalizing" % ("Without" if j == 0 else "With"))
    plt.draw()
    plt.pause(0.01) 
開發者ID:gutouyu,項目名稱:ML_CIA,代碼行數:24,代碼來源:BN.py

示例13: plot_metrics

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def plot_metrics(values, yAxis, xAxis, title=None, saveTo=None):
    colours = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

    for i, (train_values, dev_values, metric) in enumerate(values):
        plt.plot(map(float, train_values), linewidth=2, color=colours[i],
                 linestyle='-', label="Train {}".format(metric))
        if dev_values:
            plt.plot(map(float, dev_values), linewidth=2, color=colours[i],
                     linestyle='--', label="Dev {}".format(metric))

    plt.xlabel(xAxis)
    plt.ylabel(yAxis)
    if title:
        plt.title(title)

    if yAxis == "Loss":
        plt.legend(loc='upper right', shadow=True, prop={'size': 6})
    else:
        plt.legend(loc='upper left', shadow=True, prop={'size': 6})

    assert saveTo
    plt.savefig("{}".format(saveTo))
    plt.cla()
    plt.clf()
    plt.close() 
開發者ID:stanfordnlp,項目名稱:coqa-baselines,代碼行數:27,代碼來源:graph_utils.py

示例14: vis_detections

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def vis_detections(im, class_name, dets, thresh=0.8):
    """Visual debugging of detections."""
    import matplotlib.pyplot as plt
    #im = im[:, :, (2, 1, 0)]
    for i in xrange(np.minimum(10, dets.shape[0])):
        bbox = dets[i, :4]
        score = dets[i, -1]
        if score > thresh:
            #plt.cla()
            #plt.imshow(im)
            plt.gca().add_patch(
                plt.Rectangle((bbox[0], bbox[1]),
                              bbox[2] - bbox[0],
                              bbox[3] - bbox[1], fill=False,
                              edgecolor='g', linewidth=3)
                )
            plt.gca().text(bbox[0], bbox[1] - 2,
                 '{:s} {:.3f}'.format(class_name, score),
                 bbox=dict(facecolor='blue', alpha=0.5),
                 fontsize=14, color='white')

            plt.title('{}  {:.3f}'.format(class_name, score))
    #plt.show() 
開發者ID:chenwuperth,項目名稱:rgz_rcnn,代碼行數:25,代碼來源:test.py

示例15: keypoint_detection

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import cla [as 別名]
def keypoint_detection(img, detector, pose_net, ctx=mx.cpu(), axes=None):
    x, img = gcv.data.transforms.presets.yolo.transform_test(img, short=512, max_size=350)
    x = x.as_in_context(ctx)
    class_IDs, scores, bounding_boxs = detector(x)

    plt.cla()
    pose_input, upscale_bbox = detector_to_simple_pose(img, class_IDs, scores, bounding_boxs,
                                                       output_shape=(128, 96), ctx=ctx)
    if len(upscale_bbox) > 0:
        predicted_heatmap = pose_net(pose_input)
        pred_coords, confidence = heatmap_to_coord(predicted_heatmap, upscale_bbox)

        axes = plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores,
                              box_thresh=0.5, keypoint_thresh=0.2, ax=axes)
        plt.draw()
        plt.pause(0.001)
    else:
        axes = plot_image(frame, ax=axes)
        plt.draw()
        plt.pause(0.001)

    return axes 
開發者ID:Angzz,項目名稱:panoptic-fpn-gluon,代碼行數:24,代碼來源:cam_demo.py


注:本文中的matplotlib.pyplot.cla方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。