本文整理匯總了Python中matplotlib.pyplot.boxplot方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.boxplot方法的具體用法?Python pyplot.boxplot怎麽用?Python pyplot.boxplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.boxplot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: task_3_IQR
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def task_3_IQR(flight_data):
plot=plt.boxplot(flight_data['Price'],patch_artist=True)
for median in plot['medians']:
median.set(color='#fc0004', linewidth=2)
for flier in plot['fliers']:
flier.set(marker='+', color='#e7298a')
for whisker in plot['whiskers']:
whisker.set(color='#7570b3', linewidth=2)
for cap in plot['caps']:
cap.set(color='#7570b3', linewidth=2)
for box in plot['boxes']:
box.set(color='#7570b3', linewidth=2)
box.set(facecolor='#1b9e77')
plt.matplotlib.pyplot.savefig('task_3_iqr.png')
clean_data=[]
for index,row in flight_data.loc[flight_data['Price'].isin(plot['fliers'][0].get_ydata())].iterrows():
clean_data.append([row['Price'],row['Date_of_Flight']])
return pd.DataFrame(clean_data, columns=['Price', 'Date_of_Flight'])
示例2: box_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def box_plot(data, output_directory, output_file_name):
"""
Plots Box Plots
Args:
data (list): data
output_drectory(str): location to save graph
output_file_name(str): name of the image file to be saved
Returns:
null
"""
plt.figure()
plt.boxplot(data)
plt.legend()
saver.check_if_dir_exists(output_directory)
plt.savefig(output_directory + "/" + output_file_name + ".png")
plt.close()
示例3: plot_boxplots
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def plot_boxplots(self, data_map, title="", xlab="", ylab="", xticks_rotation=0, xticks_fontsize=5):
"""Plot multiple pairs of data arrays.
:param self: object.
:param data_map: A dictionary with labels as keys and lists as data values.
:param title: Figure title.
:param xlab: X axis label.
:param ylab: Y axis label.
:param xticks_rotation: Rotation value for x tick labels.
:param xticks_fontsize: Fontsize for x tick labels.
:returns: None
:rtype: object
"""
fig = plt.figure()
plt.boxplot(list(data_map.values()))
plt.xticks(np.arange(len(data_map)) + 1, data_map.keys(), rotation=xticks_rotation, fontsize=xticks_fontsize)
self._set_properties_and_close(fig, title, xlab, ylab)
示例4: drawBoxPlot_Both_USER
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def drawBoxPlot_Both_USER(app,dr,drILP):
fig, ax = plt.subplots()
data_a=dr[dr.app==app].r.values
data_b=drILP[drILP.app==app].r.values
ticks = list(np.sort(dr[dr.app==app].user.unique()))
bpl = plt.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpI = plt.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#5ab4ac') # colors are from http://colorbrewer2.org/
set_box_color(bpI, '#d8b365')
# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#5ab4ac', label='Partition')
plt.plot([], c='#d8b365', label='ILP')
plt.legend()
plt.xticks(xrange(0, len(ticks) * 2, 2), ticks)
plt.xlim(-2, len(ticks)*2)
#plt.ylim(0, 10000)
# plt.ylim(00, 1000)
ax.set_title('App: %i'%app)
ax.set_ylabel('Time Response')
ax.set_xlabel('User')
plt.tight_layout()
plt.savefig(pathSimple+"app%i.png"%app)
示例5: drawBoxPlot_App
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def drawBoxPlot_App(dar,darILP,labeldar="Partition",labelILP="ILP"):
fig, ax = plt.subplots()
#This is not work :/
#data_a = dr.groupby(["app"]).agg({"values": lambda x: list(x.sum())})
data_a=dar.r.values
data_b=darILP.r.values
ticks = list(np.sort(dar.app.unique()))
bpl = plt.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpI = plt.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#5ab4ac') # colors are from http://colorbrewer2.org/
set_box_color(bpI, '#d8b365')
# draw temporary red and blue lines and use them to create a legend
plt.plot([], c='#5ab4ac', label=labeldar)
plt.plot([], c='#d8b365', label=labelILP)
plt.legend()
plt.xticks(xrange(0, len(ticks) * 2, 2), ticks)
plt.xlim(-2, len(ticks)*2)
#plt.ylim(50, 400)
#plt.ylim(0, 10000)
ax.set_title('All Apps')
ax.set_ylabel('Time Response')
ax.set_xlabel('App')
plt.tight_layout()
示例6: drawBoxPlot_Both_USER_ax
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def drawBoxPlot_Both_USER_ax(app,dr,drILP,ax):
data_a=dr[dr.app==app].r.values
data_b=drILP[drILP.app==app].r.values
ticks = list(np.sort(dr[dr.app==app].user.unique()))
bpl = ax.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.55,
whiskerprops = dict(linewidth=2),
boxprops = dict(linewidth=2),
capprops = dict(linewidth=2),
medianprops = dict(linewidth=2))
bpI = ax.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.55,
whiskerprops = dict(linewidth=2),
boxprops = dict(linewidth=2),
capprops = dict(linewidth=2),
medianprops = dict(linewidth=2))
set_box_color(bpl, '#a6bddb')
set_box_color(bpI, '#e34a33')
ax.get_xaxis().set_ticks(xrange(0, len(ticks) * 2, 2))
ax.set_xticklabels(ticks)
ax.set_xlim(-2, len(ticks)*2)
ax.plot([], c='#a6bddb', label="Partition",linewidth=3)
ax.plot([], c='#e34a33', label="ILP",linewidth=3)
示例7: plot_weight_distribution
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def plot_weight_distribution(path, model):
parameters = model.get_weights()
weights = parameters[0::2]
biases = parameters[1::2]
plt.figure(figsize=(15, 10))
plt.boxplot([np.ravel(w) for w in weights], whis=15)
plt.xlabel("Layer index")
plt.ylabel("Weight value")
plt.savefig(os.path.join(path, 'weight_distribution'))
plt.figure(figsize=(15, 10))
plt.boxplot([np.ravel(b) for b in biases])
plt.xlabel("Layer index")
plt.ylabel("Bias value")
plt.savefig(os.path.join(path, 'bias_distribution'))
示例8: _boxplot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def _boxplot(self, plot_kwargs=None, figure_kwargs=None, **kwargs):
"""
Function to create a boxplot and push it
Parameters
----------
plot_kwargs : dict
the arguments for plotting
figure_kwargs : dict
the arguments to actually create the figure
**kwargs :
additional keyword arguments for pushing the created figure to the
logging writer
"""
if plot_kwargs is None:
plot_kwargs = {}
if figure_kwargs is None:
figure_kwargs = {}
with self.FigureManager(self._figure, figure_kwargs, kwargs):
from matplotlib.pyplot import boxplot
boxplot(**plot_kwargs)
示例9: boxplot_viz
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def boxplot_viz(clean_df, target):
clean_df = clean_df[target]
models = pd.unique(clean_df.index.values)
data_arr = np.array([clean_df[m].values for m in models]).T
base_colors = [hsl2hex(c) for c in color_scale((0., 0.8, 0.6), (0.8, 0.8, 0.6), len(models))]
plt.figure(figsize=(7, 3.5))
title_str = "Raw Per Model {} Comparison ({})".format('Classification' if target=='F1_SCORE' else 'Regression', target)
plt.title(title_str, size=12)
bplot = plt.boxplot(data_arr, vert=False, patch_artist=True, notch=True, labels=" ", positions=list(reversed(range(1, len(models)+1))))
for p, c in zip(bplot['boxes'], base_colors):
p.set_facecolor(c)
plt.legend(bplot['boxes'], models, loc='lower left', prop={'size': 8}, fancybox=True, framealpha=0.6)
plt.setp(bplot['fliers'], markeredgecolor='grey')
plt.setp(bplot['medians'], color='black')
# plt.show()
plt.savefig('figures/RawDataBoxPlot{}.pdf'.format(target), dpi=plt.gcf().dpi, transparent=True)
示例10: createBoxplotsFromColumns
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def createBoxplotsFromColumns(title,param, param1):
plt.title(title)
plt.boxplot([param,param1])
plt.savefig('boxplots/boxplot:%s.png' % title,dpi=300)
plt.gcf().clear()
示例11: plotAlphaDiversities
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def plotAlphaDiversities(self, alphaDiversityFile, figure_filename):
# Take an alpha diversity file and create a box plot
with open(alphaDiversityFile,'r') as fid:
all_lines = fid.readlines()
alpha_diversities = [float(line.split()[1]) for line in all_lines[1:]]
sampleIDs = [line.split()[0] for line in all_lines[1:]]
figure()
plt.boxplot(alpha_diversities)
plt.xlabel('Sample category')
plt.ylabel('Alpha diversity')
plt.savefig(figure_filename)
示例12: plot_prob_cl_box
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def plot_prob_cl_box(prob_cl_mapping_list, plot_outliers=False):
ks = prob_cl_mapping_list.keys()
ks.sort()
for i, classname in enumerate(ks):
v = prob_cl_mapping_list[classname]
data = [[], [], [], []]
labels = ['0.6~0.7', '0.7~0.8', '0.8~0.9', '0.9~1.0']
prob_list = v[0]
cl_list = v[1]
for cl, prob in zip(cl_list, prob_list):
if 0.6 <= cl < 0.7:
ind = 0
elif 0.7 <= cl < 0.8:
ind = 1
elif 0.8 <= cl < 0.9:
ind = 2
elif 0.9 <= cl <= 1.0:
ind = 3
else:
raise Exception("invalid CL: %.3f" % cl)
data[ind].append(prob)
ax = plt.subplot(3, 2, i + 1)
if (plot_outliers):
symb = '+'
else:
symb = ''
plt.boxplot(data, labels=labels, sym=symb)
plt.xlabel('Consensus level')
plt.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5, axis='y')
if (i % 2 == 0):
#plt.ylabel('Classification probability')
plt.ylabel('Probability')
# if (not plot_outliers):
# plt.ylim([0.6, 1.0])
ax.set_title('%s' % classname.replace('_', 'C_') + 'P')
#plt.suptitle('Probability vs. Consensus level')
plt.tight_layout(h_pad=0.0)
plt.show()
示例13: drawBoxPlot_User_App
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def drawBoxPlot_User_App(dr,app):
fig, ax = plt.subplots()
ax.boxplot(dr[dr.app==app]["r"].values)
#TODO ILP CHANGE POSITION
ax.set_xticklabels(dr[dr.app==app]["user"].values)
ax.set_title('App: %i'%app)
ax.set_ylabel('Time Response')
ax.set_xlabel('User')
plt.show()
示例14: drawBoxPlot_Both_USER_ax
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def drawBoxPlot_Both_USER_ax(app,dr,drILP,ax):
data_a=dr[dr.app==app].r.values
data_b=drILP[drILP.app==app].r.values
ticks = list(np.sort(dr[dr.app==app].user.unique()))
bpl = ax.boxplot(data_a, positions=np.array(xrange(len(data_a)))*2.0-0.4, sym='', widths=0.6)
bpI = ax.boxplot(data_b, positions=np.array(xrange(len(data_b)))*2.0+0.4, sym='', widths=0.6)
set_box_color(bpl, '#5ab4ac')
set_box_color(bpI, '#d8b365')
ax.get_xaxis().set_ticks(xrange(0, len(ticks) * 2, 2))
ax.set_xticklabels(ticks)
ax.set_xlim(-2, len(ticks)*2)
ax.plot([], c='#5ab4ac', label="Partition")
ax.plot([], c='#d8b365', label="ILP")
示例15: after_training
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import boxplot [as 別名]
def after_training(self, runner, training_stats: TrainingStatistics):
import matplotlib.pyplot as plt
if len(training_stats.train_summaries) > 0 and (len(training_stats.train_summaries[0].time_used_inference) == 0
and len(training_stats.train_summaries[0].time_used_optimizing) == 0):
raise ValueError('To generate box-plots, please train with the '
'Trainer object with collect_all_times=True')
inference_test_data = [s.time_used_inference for s in training_stats.test_summaries]
optimizing_time_train = [s.time_used_optimizing for s in training_stats.train_summaries]
plt.figure()
plt.title('Time used for inference')
plt.xlabel('Epoch')
plt.ylabel('time used')
plt.boxplot(inference_test_data, 1, '')
plt.savefig(self.path + "_inference_test")
print('Box plot written to: {}.png'.format(self.path + "_inference_test"))
plt.close()
plt.figure()
plt.title('Time used for optimization (inference + gradient update)')
plt.xlabel('Epoch')
plt.ylabel('time used')
plt.boxplot(optimizing_time_train, 1, '')
plt.savefig(self.path + "_optimizing_train")
print('Box plot written to: {}.png'.format(self.path + "_optimizing_train"))
plt.close()