本文整理匯總了Python中matplotlib.pyplot.barh方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.barh方法的具體用法?Python pyplot.barh怎麽用?Python pyplot.barh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.barh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_preds
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_preds(image, preds):
"""Displays image and the top-n predicted probabilities in a bar graph
Args:
image: PIL image
preds: list of predicted labels and their probabilities
"""
"""# For Spyder
plt.imshow(image)
plt.axis('off')"""
plt.figure()
labels = ("cat", "dog")
plt.barh([0, 1], preds, alpha=0.5)
plt.yticks([0, 1], labels)
plt.xlabel('Probability')
plt.xlim(0,1.01)
plt.tight_layout()
plt.savefig('out.png')
示例2: plot_bar_chart
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_bar_chart(self, data):
x = []
y = []
for item in data:
y.append(item['count'])
x.append(item['Implemented_by_partial_function'])
plt.barh(x, y)
plt.title("Top apis", fontsize=10)
plt.xlabel("Number of API Calls", fontsize=8)
plt.xticks([])
plt.ylabel("Partial function", fontsize=8)
plt.tick_params(axis='y', labelsize=8)
for i, j in zip(y, x):
plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '')
buf.close()
# Clear the previous plot.
plt.gcf().clear()
return image_base64
示例3: draw_one
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def draw_one(self, xls, title, color):
title = '{} ({})'.format(title, xls.columns[0])
column_a = xls[xls.columns[0]]
column_c = xls[xls.columns[2]]
ticks = [column_a[x] for x in range(3, 16)]
kbps = [self.float2(column_c[x]) for x in range(3, 16)]
plt.barh(range(16 - 3), kbps, height=0.2, color=color, alpha=0.8)
plt.yticks(range(16 - 3), ticks)
plt.xlim(0, max(kbps) * 1.2)
plt.xlabel("Speed")
plt.title(title)
for x, y in enumerate(kbps):
plt.text(y + 1000, x - 0.1, '%s KB/s' % y)
plt.show()
示例4: plot_topconsumer_bar_chart
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_topconsumer_bar_chart(self, data):
x = []
y = []
for item in data:
y.append(item['count'])
x.append(item['app_name'])
plt.barh(x, y)
plt.title("Top consumers", fontsize=10)
plt.xlabel("Number of API Calls", fontsize=8)
plt.xticks([])
plt.ylabel("Consumers", fontsize=8)
plt.tick_params(axis='y', labelsize=8)
for i, j in zip(y, x):
plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '')
buf.close()
# Clear the previous plot.
plt.gcf().clear()
return image_base64
示例5: plot_parameter_statistic
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_parameter_statistic(model, layer_types=['Dense', 'Conv2D'], trainable=True, non_trainable=False, outputs=False):
parameter_count = []
names = []
for l in model.layers:
if l.__class__.__name__ not in layer_types:
continue
count = 0
if outputs:
count += np.sum([np.sum([np.prod(s[1:]) for s in n.output_shapes]) for n in l._inbound_nodes])
if trainable:
count += np.sum([K.count_params(p) for p in set(l.trainable_weights)])
if non_trainable:
count += np.sum([K.count_params(p) for p in set(l.non_trainable_weights)])
parameter_count.append(count)
names.append(l.name)
y = range(len(names))
plt.figure(figsize=[12,max(len(y)//4,1)])
plt.barh(y, parameter_count, align='center')
plt.yticks(y, names)
plt.ylim(y[0]-1, y[-1]+1)
ax = plt.gca()
ax.invert_yaxis()
ax.xaxis.tick_top()
plt.show()
示例6: plot_dsc
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_dsc(dsc_dist):
y_positions = np.arange(len(dsc_dist))
dsc_dist = sorted(dsc_dist.items(), key=lambda x: x[1])
values = [x[1] for x in dsc_dist]
labels = [x[0] for x in dsc_dist]
labels = ["_".join(l.split("_")[1:-1]) for l in labels]
fig = plt.figure(figsize=(12, 8))
canvas = FigureCanvasAgg(fig)
plt.barh(y_positions, values, align="center", color="skyblue")
plt.yticks(y_positions, labels)
plt.xticks(np.arange(0.0, 1.0, 0.1))
plt.xlim([0.0, 1.0])
plt.gca().axvline(np.mean(values), color="tomato", linewidth=2)
plt.gca().axvline(np.median(values), color="forestgreen", linewidth=2)
plt.xlabel("Dice coefficient", fontsize="x-large")
plt.gca().xaxis.grid(color="silver", alpha=0.5, linestyle="--", linewidth=1)
plt.tight_layout()
canvas.draw()
plt.close()
s, (width, height) = canvas.print_to_buffer()
return np.fromstring(s, np.uint8).reshape((height, width, 4))
示例7: render
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def render(self):
""" Prepare data for plotting
"""
# init figure
self.fig, self.ax = plt.subplots()
self.ax.yaxis.grid(False)
self.ax.xaxis.grid(True)
# assemble colors
colors = []
for pkg in self.packages:
colors.append(pkg.color)
self.barlist = plt.barh(self.yPos, list(self.durations),
left=self.start,
align='center',
height=.5,
alpha=1,
color=colors)
# format plot
self.format()
self.add_milestones()
self.add_legend()
示例8: altPlotFeaturesImportance
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def altPlotFeaturesImportance(X,y,featureNames,dataName):
"http://nbviewer.ipython.org/github/cs109/2014/blob/master/homework-solutions/HW5-solutions.ipynb"
clf = RandomForestClassifier(n_estimators=50)
clf.fit(X,y)
importance_list = clf.feature_importances_
# name_list = df.columns #ORIG
name_list=featureNames
importance_list, name_list = zip(*sorted(zip(importance_list, name_list)))
plt.barh(range(len(name_list)),importance_list,align='center')
plt.yticks(range(len(name_list)),name_list)
plt.xlabel('Relative Importance in the Random Forest')
plt.ylabel('Features')
plt.title('%s \n Relative Feature Importance' %(dataName))
plt.grid('off')
plt.ion()
plt.show()
示例9: draw_bar
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def draw_bar(labels,quants,indicate_path,xlabel,ylabel,title):
width=0.35
plt.figure(figsize=(8,(width+0.1)*len(quants)), dpi=300)
# Bar Plot
plt.cla()
plt.clf()
plt.barh(range(len(quants)),quants,tick_label=labels)
plt.grid(True)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.savefig(indicate_path)
plt.close()
示例10: generate_city_pic
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def generate_city_pic(self, city_data):
"""
生成城市數據圖片
因為plt在子線程中執行會出現自動彈出彈框並阻塞主線程的行為,plt行為均放在主線程中
:param data:
:return:
"""
font = {'family': ['xkcd', 'Humor Sans', 'Comic Sans MS'],
'weight': 'bold',
'size': 12}
matplotlib.rc('font', **font)
cities = city_data['cities']
city_people = city_data['city_people']
# 繪製「性別分布」柱狀圖
plt.barh(range(len(cities)), width=city_people, align='center', color=self.bar_color, alpha=0.8)
# 添加軸標簽
plt.xlabel(u'Number of People')
# 添加標題
plt.title(u'Top %d Cities of your friends distributed' % len(cities), fontsize=self.title_font_size)
# 添加刻度標簽
plt.yticks(range(len(cities)), cities)
# 設置X軸的刻度範圍
plt.xlim([0, city_people[0] * 1.1])
# 為每個條形圖添加數值標簽
for x, y in enumerate(city_people):
plt.text(y + len(str(y)), x, y, ha='center')
# 顯示圖形
plt.savefig(ALS.result_path + '/4.png')
# todo 如果調用此處的關閉,就會導致應用本身也被關閉
# plt.close()
# plt.show()
示例11: draw_compare
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def draw_compare(self):
xls = self.oxfs_xls
column_a = xls[xls.columns[0]]
column_c = xls[xls.columns[2]]
oxfs_ticks = [column_a[x] + '- oxfs' for x in range(3, 16)]
oxfs_kbps = [self.float2(column_c[x]) for x in range(3, 16)]
xls = self.sshfs_xls
column_a = xls[xls.columns[0]]
column_c = xls[xls.columns[2]]
sshfs_ticks = [column_a[x] + '- sshfs' for x in range(3, 16)]
sshfs_kbps = [self.float2(column_c[x]) for x in range(3, 16)]
ticks = []
kbps = []
for i in range(0, len(oxfs_kbps)):
ticks.append(oxfs_ticks[i])
ticks.append(sshfs_ticks[i])
kbps.append(oxfs_kbps[i])
kbps.append(sshfs_kbps[i])
barlist = plt.barh(range(len(kbps)), kbps, height=0.3, color='coral', alpha=0.8)
for bar in barlist[1::2]:
bar.set_color('slateblue')
plt.yticks(range(len(ticks)), ticks)
plt.xlim(0, max(kbps) * 1.2)
for x, y in enumerate(kbps):
plt.text(y + 1000, x - 0.1, '%s KB/s' % y)
title = 'Oxfs Vs Sshfs ({})'.format(xls.columns[0])
plt.title(title)
plt.xlabel("Speed")
plt.show()
示例12: plot_performance
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_performance(perf, kmax = 100, prec_type = 'LCS_HEIGHT', clip_ahp = None):
import matplotlib.pyplot as plt
plt.figure()
plt.xlabel('k')
plt.ylabel('Hierarchical Precision')
plt.xlim(0, kmax)
plt.ylim(0, 1)
plt.grid()
min_prec = 1.0
for lbl, metrics in perf.items():
precs = [metrics['P@{} ({})'.format(k, prec_type)] for k in range(1, kmax+1)]
plt.plot(np.arange(1, kmax + 1), precs, label = lbl)
min_prec = min(min_prec, min(precs))
min_prec = np.floor(min_prec * 20) / 20
if min_prec >= 0.3:
plt.ylim(min_prec, 1)
plt.legend(fontsize = 'x-small')
plt.figure()
plt.xlabel('Mean Average Hierarchical Precision')
plt.yticks([])
plt.grid(axis = 'x')
for i, (lbl, metrics) in enumerate(perf.items()):
mAHP = metrics['AHP{} ({})'.format('@{}'.format(clip_ahp) if clip_ahp else '', prec_type)]
plt.barh(i + 0.5, mAHP, 0.8)
plt.text(0.01, i + 0.5, lbl, verticalalignment = 'center', horizontalalignment = 'left', color = 'white', fontsize = 'small')
plt.text(mAHP - 0.01, i + 0.5, '{:.1%}'.format(mAHP), verticalalignment = 'center', horizontalalignment = 'right', color = 'white')
plt.show()
示例13: barHonGraphics
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def barHonGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='圖例',xWidth=0.5):
plt.barh(numpy.arange(len(xValueList)), yValueList, alpha=0.4)
plt.yticks(numpy.arange(len(xValueList)), xValueList,fontproperties=font_set)
plt.xlabel(yLabel,fontproperties=font_set)
plt.ylabel(xLabel,fontproperties=font_set)
plt.title(graphicTitle,fontproperties=font_set)
plt.show()
#折線圖:藍色粗線
示例14: plot_feature_split_proportions
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot_feature_split_proportions(model: SklearnModel, ax=None):
if ax is None:
_, ax = plt.subplots(1, 1)
proportions = feature_split_proportions(model)
y_pos = np.arange(len(proportions))
name, count = list(proportions.keys()), list(proportions.values())
props = pd.DataFrame({"name": name, "counts": count}).sort_values("name", ascending=True)
plt.barh(y_pos, props.counts, align='center', alpha=0.5)
plt.yticks(y_pos, props.name)
plt.xlabel('Proportion of all splits')
plt.ylabel('Feature')
plt.title('Proportion of Splits Made on Each Variable')
return ax
示例15: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import barh [as 別名]
def plot(counts):
labels = map(lambda x: x[0], counts)
values = map(lambda y: y[1], counts)
plt.barh(range(len(values)), values, color='green')
plt.yticks(range(len(values)), labels)
plt.show()