本文整理匯總了Python中matplotlib.pyplot.bar方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.bar方法的具體用法?Python pyplot.bar怎麽用?Python pyplot.bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.bar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: data_stat
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例2: _plot_global_imp
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def _plot_global_imp(self, top_words, top_importances, label_name):
""" Function to plot the global importances
:param top_words: The tokenized words
:type top_words: str[]
:param top_importances: The associated feature importances
:type top_importances: float[]
:param label_name: The label predicted
:type label_name: str
"""
plt.figure(figsize=(8, 4))
plt.title(
"most important words for class label: " + str(label_name), fontsize=18
)
plt.bar(range(len(top_importances)), top_importances, color="b", align="center")
plt.xticks(range(len(top_importances)), top_words, rotation=60, fontsize=18)
plt.show()
示例3: graph_query_amounts
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def graph_query_amounts(captcha_queries, query_amounts):
queries_and_amounts = zip(captcha_queries, query_amounts)
queries_and_amounts = sorted(queries_and_amounts, key=lambda x:x[1], reverse=True)
captcha_queries, query_amounts = zip(*queries_and_amounts)
# colours = cm.Dark2(np.linspace(0,1,len(captcha_queries)))
# legend_info = zip(query_numbers, colours)
# random.shuffle(colours)
# captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries]
bars = plt.bar(left=range(len(query_amounts)), height=query_amounts)
plt.xlabel('CAPTCHA queries.')
plt.ylabel('Query frequencies.')
plt.xticks([])
# plt.xticks(range(len(captcha_queries)), captcha_queries, rotation='vertical')
# colours = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w', ]
patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
plt.legend(handles=patches)
for i, bar in enumerate(bars):
bar.set_color(colours[i])
plt.show()
示例4: graph_correct_captchas
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def graph_correct_captchas(captcha_queries, correct_captchas):
queries_and_correct_scores = zip(captcha_queries, correct_captchas)
queries_and_correct_scores = sorted(queries_and_correct_scores, key=lambda x:x[1], reverse=True)
captcha_queries, correct_captchas = zip(*queries_and_correct_scores)
captcha_queries = [textwrap.fill(query, 10) for query in captcha_queries]
bars = plt.bar(left=range(len(correct_captchas)), height=correct_captchas)
patches = [mpatches.Patch(color=colours[j], label=captcha_queries[j]) for j in range(len(captcha_queries))]
plt.legend(handles=patches)
plt.xticks([])
for i, bar in enumerate(bars):
bar.set_color(colours[i])
plt.show()
# graph_correct_captchas(captcha_queries, correct_captchas)
# graph_query_amounts(captcha_queries, query_amounts)
示例5: plot_path_hist
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def plot_path_hist(results, labels, tols, figsize, ylim=None):
configure_plt()
sns.set_palette('colorblind')
n_competitors = len(results)
fig, ax = plt.subplots(figsize=figsize)
width = 1. / (n_competitors + 1)
ind = np.arange(len(tols))
b = (1 - n_competitors) / 2.
for i in range(n_competitors):
plt.bar(ind + (i + b) * width, results[i], width,
label=labels[i])
ax.set_ylabel('path computation time (s)')
ax.set_xticks(ind + width / 2)
plt.xticks(range(len(tols)), ["%.0e" % tol for tol in tols])
if ylim is not None:
plt.ylim(ylim)
ax.set_xlabel(r"$\epsilon$")
plt.legend(loc='upper left')
plt.tight_layout()
plt.show(block=False)
return fig
示例6: draw_bar
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def draw_bar(data, labels, width=None, xticks_font_fname=None, legend_kwargs=dict()):
n = len(labels)
m = len(data)
if not width:
width = 1. / (m + .6)
off = 1.
legend_bar = []
legend_text = []
for i, a in enumerate(data):
for j, b in enumerate(a):
assert n == len(b['data'])
ind = [off + k + (i + (1 - m) / 2) * width for k in range(n)]
bottom = [sum(d) for d in zip(*[c['data'] for c in a[j + 1:]])] or None
p = plt.bar(ind, b['data'], width, bottom=bottom, color=b.get('color'))
legend_bar.append(p[0])
legend_text.append(b['legend'])
ind = [off + i for i, label in enumerate(labels) if label is not None]
labels = [label for label in labels if label is not None]
font = FontProperties(fname=xticks_font_fname)
plt.xticks(ind, labels, fontproperties=font, ha='center')
plt.legend(legend_bar, legend_text, **legend_kwargs)
示例7: histogramPlots
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def histogramPlots(list):
a, b = converter.ad_vectors(list)
obs = np.array(a)
l = []
colors = ['b', 'r', 'g', 'm', 'k'] # Can plot upto 5 different colors
for i in range(0, len(list)):
l.append([int(i) for i in obs[i]])
pos = np.arange(1, len(obs[0])+1)
width = 0.5 # gives histogram aspect to the bar diagram
gridLineWidth=0.1
fig, ax = plt.subplots()
ax.xaxis.grid(True, zorder=0)
ax.yaxis.grid(True, zorder=0)
for i in range(0, len(list)):
lbl = "ads"+str(i)
plt.bar(pos, l[i], width, color=colors[i], alpha=0.5, label = lbl)
#plt.xticks(pos+width/2., obs[0], rotation='vertical') # useful only for categories
#plt.axis([-1, len(obs[2]), 0, len(ran1)/2+10])
plt.legend()
plt.show()
示例8: __generic_histo__
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def __generic_histo__(self, vector, labels):
# This function just calls the appropriate plot function for our available
# interface. Same thing as generic_ci, but for a histogram.
if self.interface == 'text':
self.__terminal_histo__(vector, labels)
else:
try:
import matplotlib
matplotlib.use('TkAgg')
from matplotlib import pyplot as plt
plt.bar(list(range(0, np.array(vector).shape[0])), vector, linewidth=0, align='center', color='gold', tick_label=labels)
plt.show()
except:
print('Unable to import plotting interface. An X server ($DISPLAY) is required.')
self.__terminal_histo__(h5file, vector, labels)
return 1
示例9: plotHist
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def plotHist(self, vocabulary = None):
print "Plotting histogram"
if vocabulary is None:
vocabulary = self.mega_histogram
x_scalar = np.arange(self.n_clusters)
y_scalar = np.array([abs(np.sum(vocabulary[:,h], dtype=np.int32)) for h in range(self.n_clusters)])
print y_scalar
plt.bar(x_scalar, y_scalar)
plt.xlabel("Visual Word Index")
plt.ylabel("Frequency")
plt.title("Complete Vocabulary Generated")
plt.xticks(x_scalar + 0.4, x_scalar)
plt.show()
示例10: make_stats
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def make_stats(dir, score, name, bounds):
bin_edges = np.linspace(bounds[0], bounds[1], 11)
binned_ind = np.digitize(score, bin_edges)
occurrence, _ = np.histogram(score, bin_edges, density=False)
bin_width = bin_edges[1] - bin_edges[0]
bin_mid = bin_edges + bin_width / 2
plt.figure()
plt.bar(bin_mid[:-1], occurrence, bin_width, facecolor='b', alpha=0.5)
plt.title(name)
plt.xlabel(name)
plt.ylabel('occurences')
plt.savefig(dir + '/' + name + '.png')
plt.close()
f = open(dir + '/{}_histo.txt'.format(name), 'w')
for i in range(bin_edges.shape[0]-1):
f.write('indices for bin {}, {} to {} : {} \n'.format(i, bin_edges[i], bin_edges[i+1], np.where(binned_ind == i+1)[0].tolist()))
示例11: main
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def main():
colors = "rgbcmyk"
d = grap_all_feat_corr_dict()
keys = sorted(d.keys())
N = len(keys)
fig = plt.figure()
ax = fig.add_subplot(111)
for e,k in enumerate(keys, start=1):
vals = sorted(d[k])
color = colors[(e-1) % len(colors)]
plt.bar(np.linspace(e-0.48,e+0.48,len(vals)), vals,
width=1./(len(vals)+10), color=color, edgecolor=color)
plt.xlabel("Feature Group", fontsize=15)
plt.ylabel("Correlation Coefficient", fontsize=15)
plt.xticks(range(1,N+1), fontsize=15)
plt.yticks([-0.4, -0.2, 0, 0.2, 0.4], fontsize=15)
ax.set_xticklabels(keys, rotation=45, ha="right")
ax.set_xlim([0, N+1])
ax.set_ylim([-0.4, 0.4])
pos1 = ax.get_position()
pos2 = [pos1.x0 - 0.075, pos1.y0 + 0.175, pos1.width * 1.2, pos1.height * 0.85]
ax.set_position(pos2)
plt.show()
示例12: firebase_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def firebase_plot(firebase):
"""
This plotting function takes in two dictionaries by calling the firebase_stats function.
The first the the statistics by user, and the second the statistics by category.
It then uses matplotlib to plot 2 bar charts based on the data in the respective dictionaries.
"""
by_user_count, by_category_count = firebase_stats(firebase)
plt.bar(range(len(by_user_count)), by_user_count.values())
plt.xticks(range(len(by_user_count)), by_user_count.keys())
plt.title('Statistics by user')
plt.xlabel('User name')
plt.ylabel('Number of items recycled')
plt.show()
plt.bar(range(len(by_category_count)), by_category_count.values())
plt.xticks(range(len(by_category_count)), by_category_count.keys())
plt.title('Statistics by category')
plt.xlabel('Recyclable item category')
plt.ylabel('Number of items recycled')
plt.show()
示例13: make_ddict_in_range
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def make_ddict_in_range(json_file,start,end):
"""
return a defaultdict(int) of dates with activity on those dates in a date range
"""
events = (loads(line) for line in json_file)
#generator, so whole file is not put in mem
msg_infos = (extract_info(event) for event in events if 'text' in event)
msg_infos = ((date,weekday,length) for (date,weekday,length) in msg_infos if date >= start and date <= end)
counter = defaultdict(int)
#a dict with days as keys and frequency as values
day_freqs = defaultdict(int)
for date_text,day_text,length in msg_infos:
counter[day_text] += length
day_freqs[day_text] += 1
for k,v in counter.items():
counter[k] = v/day_freqs[k]
#divide each day's activity by the number of times the day appeared.
#this makes the bar height = average chars sent on that day
#and makes the graph a more accurate representation, especially with small date ranges
return counter
示例14: plot_histogram_matrix
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def plot_histogram_matrix(data, name, fname=None):
# local import to avoid dependency for non-debug use
import matplotlib.pyplot as plt
nhists = len(data[0])
nbins = 25
ylim = (0, 0.5)
nrows = int(np.ceil(np.sqrt(nhists)))
plt.figure(figsize=(nrows * 4, nrows * 4))
for i in range(nhists):
plt.subplot(nrows, nrows, i + 1)
absmax = max(abs(np.max(data[:, i])), abs(np.min(data[:, i])))
rng = (-absmax, absmax)
h, bins = np.histogram(data[:, i], nbins, rng)
bin_width = bins[1] - bins[0]
h = h.astype("float32") / np.sum(h)
plt.bar(bins[:-1], h, bin_width)
plt.axvline(np.mean(data[:, i]), color="red")
plt.ylim(ylim)
plt.title("{:s}[{:d}]".format(name, i))
if fname is None:
plt.show()
else:
plt.savefig(fname)
plt.close()
示例15: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import bar [as 別名]
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batchSeriesIdx in range(5):
oneHotOutputSeries = np.array(predictions_series)[:, batchSeriesIdx, :]
singleOutputSeries = np.array([(1 if out[0] < 0.5 else 0) for out in oneHotOutputSeries])
plt.subplot(2, 3, batchSeriesIdx + 2)
plt.cla()
plt.axis([0, backpropagationLength, 0, 2])
left_offset = range(backpropagationLength)
plt.bar(left_offset, batchX[batchSeriesIdx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batchSeriesIdx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, singleOutputSeries * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
開發者ID:PacktPublishing,項目名稱:Neural-Network-Programming-with-TensorFlow,代碼行數:21,代碼來源:lstm_with_tensorflow.py