當前位置: 首頁>>代碼示例>>Python>>正文


Python pyplot.axvline方法代碼示例

本文整理匯總了Python中matplotlib.pyplot.axvline方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.axvline方法的具體用法?Python pyplot.axvline怎麽用?Python pyplot.axvline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.axvline方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _hist_burst_taildist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def _hist_burst_taildist(data, bins, pdf, weights=None, yscale='log',
                         color=None, label=None, plot_style=None, vline=None):
    hist = HistData(*np.histogram(data[~np.isnan(data)],
                                  bins=_bins_array(bins), weights=weights))
    ydata = hist.pdf if pdf else hist.counts

    default_plot_style = dict(marker='o')
    if plot_style is None:
        plot_style = {}
    if color is not None:
        plot_style['color'] = color
    if label is not None:
        plot_style['label'] = label
    default_plot_style.update(_normalize_kwargs(plot_style, kind='line2d'))
    plt.plot(hist.bincenters, ydata, **default_plot_style)
    if vline is not None:
        plt.axvline(vline, ls='--')
    plt.yscale(yscale)
    if pdf:
        plt.ylabel('PDF')
    else:
        plt.ylabel('# Bursts') 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:24,代碼來源:burst_plot.py

示例2: dosplot

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def dosplot (filename = None, data = None, fermi = None):
    if (filename is not None): data = np.loadtxt(filename)
    elif (data is not None): data = data

    import matplotlib.pyplot as plt
    from matplotlib import rc
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    plt.plot(data.T[0], data.T[1], label='MF Spin-UP', linestyle=':',color='r')
    plt.fill_between(data.T[0], 0, data.T[1], facecolor='r',alpha=0.1, interpolate=True)
    plt.plot(data.T[0], data.T[2], label='QP Spin-UP',color='r')
    plt.fill_between(data.T[0], 0, data.T[2], facecolor='r',alpha=0.5, interpolate=True)
    plt.plot(data.T[0],-data.T[3], label='MF Spin-DN', linestyle=':',color='b')
    plt.fill_between(data.T[0], 0, -data.T[3], facecolor='b',alpha=0.1, interpolate=True)
    plt.plot(data.T[0],-data.T[4], label='QP Spin-DN',color='b')
    plt.fill_between(data.T[0], 0, -data.T[4], facecolor='b',alpha=0.5, interpolate=True)
    if (fermi!=None): plt.axvline(x=fermi ,color='k', linestyle='--') #label='Fermi Energy'
    plt.axhline(y=0,color='k')
    plt.title('Total DOS', fontsize=20)
    plt.xlabel('Energy (eV)', fontsize=15) 
    plt.ylabel('Density of States (electron/eV)', fontsize=15)
    plt.legend()
    plt.savefig("dos_eigen.svg", dpi=900)
    plt.show() 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:26,代碼來源:m_dos_pdos_eigenvalues.py

示例3: plot_gap

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_gap(cls, algorithm, dname):
        if dname is None:
            return
        if not os.path.exists(dname):
            os.mkdir(dname)

        plt.figure()
        plt.title(algorithm.estimator.__class__.__name__)
        plt.xlabel("Number of clusters")
        plt.ylabel("Gap statistic")

        plt.plot(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                    algorithm.results['gap'], 'o-', color='dodgerblue')
        plt.errorbar(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                        algorithm.results['gap'], algorithm.results['gap_sk'], capsize=3)
        plt.axvline(x=algorithm.results['gap_nc'], ls='--', C='gray', zorder=0)
        plt.savefig('%s/gap_%s.png' %
                    (dname, algorithm.estimator.__class__.__name__),
                    bbox_inches='tight', dpi=75)
        plt.close() 
開發者ID:canard0328,項目名稱:malss,代碼行數:22,代碼來源:clustering.py

示例4: plot_silhouette

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_silhouette(cls, algorithm, dname):
        if dname is None:
            return
        if not os.path.exists(dname):
            os.mkdir(dname)

        plt.figure()
        plt.title(algorithm.estimator.__class__.__name__)
        plt.xlabel("Number of clusters")
        plt.ylabel("Silhouette score")

        plt.plot(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                    algorithm.results['silhouette'], 'o-', color='darkorange')
        plt.axvline(x=algorithm.results['silhouette_nc'], ls='--', C='gray', zorder=0)
        plt.savefig('%s/silhouette_%s.png' %
                    (dname, algorithm.estimator.__class__.__name__),
                    bbox_inches='tight', dpi=75)
        plt.close() 
開發者ID:canard0328,項目名稱:malss,代碼行數:20,代碼來源:clustering.py

示例5: plot_davies

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_davies(cls, algorithm, dname):
        if dname is None:
            return
        if not os.path.exists(dname):
            os.mkdir(dname)

        plt.figure()
        plt.title(algorithm.estimator.__class__.__name__)
        plt.xlabel("Number of clusters")
        plt.ylabel("Davies-Bouldin score")

        plt.plot(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                    algorithm.results['davies'], 'o-', color='limegreen')
        plt.axvline(x=algorithm.results['davies_nc'], ls='--', C='gray', zorder=0)
        plt.savefig('%s/davies_%s.png' %
                    (dname, algorithm.estimator.__class__.__name__),
                    bbox_inches='tight', dpi=75)
        plt.close() 
開發者ID:canard0328,項目名稱:malss,代碼行數:20,代碼來源:clustering.py

示例6: plot_calinski

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_calinski(cls, algorithm, dname):
        if dname is None:
            return
        if not os.path.exists(dname):
            os.mkdir(dname)

        plt.figure()
        plt.title(algorithm.estimator.__class__.__name__)
        plt.xlabel("Number of clusters")
        plt.ylabel("Calinski and Harabasz score")

        plt.plot(range(algorithm.results['min_nc'], algorithm.results['max_nc'] + 1),
                    algorithm.results['calinski'], 'o-', color='crimson')
        plt.axvline(x=algorithm.results['calinski_nc'], ls='--', C='gray', zorder=0)
        plt.savefig('%s/calinski_%s.png' %
                    (dname, algorithm.estimator.__class__.__name__),
                    bbox_inches='tight', dpi=75)
        plt.close() 
開發者ID:canard0328,項目名稱:malss,代碼行數:20,代碼來源:clustering.py

示例7: chisq_dist

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def chisq_dist():
    fig = plt.figure(figsize=(6,4))
    ivar = np.load("%s/val_ivar_norm.npz" %DATA_DIR)['arr_0']
    npix = np.sum(ivar>0, axis=1)
    chisq = np.load("%s/val_chisq.npz" %DATA_DIR)['arr_0']
    redchisq = chisq/npix
    nbins = 25
    plt.hist(redchisq, bins=nbins, color='k', histtype="step",
            lw=2, normed=False, alpha=0.3, range=(0,3))
    plt.legend()
    plt.xlabel("Reduced $\chi^2$", fontsize=16)
    plt.tick_params(axis='both', labelsize=16)
    plt.ylabel("Count", fontsize=16)
    plt.axvline(x=1.0, linestyle='--', c='k')
    fig.tight_layout()
    #plt.show()
    plt.savefig("chisq_dist.png") 
開發者ID:annayqho,項目名稱:TheCannon,代碼行數:19,代碼來源:validation_plots.py

示例8: plot_rss

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_rss(cm, t1, t2, t3):
    """Plot the memory profile."""
    f = plt.figure(figsize=(8, 6))
    plt.plot(range(cm.cpu.shape[0]), cm.rss / 1000000)
    plt.axvline(t1 - 3, color='darkcyan', linestyle='--', linewidth=1.0,
                label='load data')
    plt.axvline(t2, color='blue', linestyle='--', linewidth=1.0,
                label='fit start')
    plt.axvline(t3, color='blue', linestyle='-.', linewidth=1.0,
                label='fit end')
    plt.xticks([i for i in [0, 50, 100, 150, 200, 250]],
               [i for i in [0, 5, 10, 15, 20, 25]])
#    plt.ylim(120, 240)
    plt.title("ML-Ensemble memory profile (working set)")
    plt.ylabel("Working set memory (MB)")
    plt.xlabel("Time (s)")
    plt.legend()
    plt.show()

    if PRINT:
        try:
            f.savefig("dev/img/memory_profile.png", dpi=600)
        except:
            f.savefig("memory_profile.png", dpi=600) 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:26,代碼來源:memory_cpu_profile.py

示例9: plot_cpu

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_cpu(cm, t1, t2, t3):
    """Plot the CPU profile."""
    f = plt.figure()
    plt.plot(range(cm.cpu.shape[0]), cm.cpu)
    plt.axvline(t1 - 3, color='darkcyan', linestyle='--', linewidth=1.0,
                label='load data')
    plt.axvline(t2, color='blue', linestyle='--', linewidth=1.0,
                label='fit start')
    plt.axvline(t3, color='blue', linestyle='-.', linewidth=1.0,
                label='fit end')
    plt.xticks([i for i in [0, 50, 100, 150, 200, 250]],
               [i for i in [0, 5, 10, 15, 20, 25]])
    plt.title("ML-Ensemble CPU profile")
    plt.ylabel("CPU utilization (%)")
    plt.xlabel("Time (s)")
    plt.legend()

    if PRINT:
        try:
            f.savefig("dev/cpu_profile.png", dpi=600)
        except:
            f.savefig("cpu_profile.png", dpi=600) 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:24,代碼來源:memory_cpu_profile.py

示例10: plot_histogram_matrix

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_histogram_matrix(data, name, fname=None):
  # local import to avoid dependency for non-debug use
  import matplotlib.pyplot as plt
  nhists = len(data[0])
  nbins = 25
  ylim = (0, 0.5)
  nrows = int(np.ceil(np.sqrt(nhists)))
  plt.figure(figsize=(nrows * 4, nrows * 4))
  for i in range(nhists):
    plt.subplot(nrows, nrows, i + 1)
    absmax = max(abs(np.max(data[:, i])), abs(np.min(data[:, i])))
    rng = (-absmax, absmax)
    h, bins = np.histogram(data[:, i], nbins, rng)
    bin_width = bins[1] - bins[0]
    h = h.astype("float32") / np.sum(h)
    plt.bar(bins[:-1], h, bin_width)
    plt.axvline(np.mean(data[:, i]), color="red")
    plt.ylim(ylim)
    plt.title("{:s}[{:d}]".format(name, i))
  if fname is None:
    plt.show()
  else:
    plt.savefig(fname)
  plt.close() 
開發者ID:CSchoel,項目名稱:nolds,代碼行數:26,代碼來源:measures.py

示例11: data_visualization

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def data_visualization(co_price, pcb_price):
    """
    原始數據可視化
    """
    x_co_values = co_price.index
    y_co_values = co_price.price / 100

    x_pcb_values = pcb_price.index
    y_pcb_values = pcb_price.price

    plt.figure(figsize=(10, 6))
    plt.title('copper price(100rmb/t) vs. pcb price(rmb/sq.m.)')
    plt.xlabel('date')
    plt.ylabel('history price')

    plt.plot(x_co_values, y_co_values, '-', label='co price')
    plt.plot(x_pcb_values, y_pcb_values, '-', label='pcb price')
    plt.axvline('2015-04-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2015-10-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2016-04-23', linewidth=1, color='r', linestyle='dashed')
    plt.axvline('2016-10-23', linewidth=1, color='r', linestyle='dashed')

    plt.legend(loc='upper right')

    plt.show() 
開發者ID:liyinwei,項目名稱:copper_price_forecast,代碼行數:27,代碼來源:correlation_analysis.py

示例12: plot_fermi_dirac

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_fermi_dirac(self):
        """
        Plots the obtained eigenvalue vs occupation plot

        """
        try:
            import matplotlib.pylab as plt
        except ModuleNotFoundError:
            import matplotlib.pyplot as plt
        arg = np.argsort(self.eigenvalues)
        plt.plot(
            self.eigenvalues[arg], self.occupancies[arg], linewidth=2.0, color="blue"
        )
        plt.axvline(self.efermi, linewidth=2.0, linestyle="dashed", color="black")
        plt.xlabel("Energies (eV)")
        plt.ylabel("Occupancy")
        return plt 
開發者ID:pyiron,項目名稱:pyiron,代碼行數:19,代碼來源:electronic.py

示例13: plot_polarization_ratio

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plot_polarization_ratio(polarization_ratio, plotName, labels,
                            number_of_quantiles):
    """
    Generate a plot to visualize the polarization ratio between A and B
    compartments. It presents how well 2 compartments are seperated.
    """

    for i, r in enumerate(polarization_ratio):
        plt.plot(r, marker="o", label=labels[i])
    plt.axhline(1, c='grey', ls='--', lw=1)
    plt.axvline(number_of_quantiles / 2, c='grey', ls='--', lw=1)
    plt.legend(loc='best')
    plt.xlabel('Quantiles')
    plt.ylabel('signal within comp. / signla between comp.')
    plt.title('compartment polarization ratio')
    plt.savefig(plotName) 
開發者ID:deeptools,項目名稱:HiCExplorer,代碼行數:18,代碼來源:hicCompartmentalization.py

示例14: plotGPGO

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plotGPGO(gpgo, param, index, new=True):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    y_hat, y_var = gpgo.GP.predict(x_test, return_std=True)
    std = np.sqrt(y_var)
    l, u = y_hat - 1.96 * std, y_hat + 1.96 * std
    if new:
        plt.figure()
        plt.subplot(5, 1, 1)
        plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
        plt.plot(x_test.flatten(), y_hat)
    plt.subplot(5, 1, index)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    plt.plot(x_test, a, color=colors[index - 2], label=acq_titles[index - 2])
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best)
    plt.legend(loc=0) 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:19,代碼來源:acqzoo.py

示例15: plotGPGO

# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axvline [as 別名]
def plotGPGO(gpgo, param):
    param_value = list(param.values())[0][1]
    x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))
    hat = gpgo.GP.predict(x_test, return_std=True)
    y_hat, y_std = hat[0], np.sqrt(hat[1])
    l, u = y_hat - 1.96 * y_std, y_hat + 1.96 * y_std
    fig = plt.figure()
    r = fig.add_subplot(2, 1, 1)
    r.set_title('Fitted Gaussian process')
    plt.fill_between(x_test.flatten(), l, u, alpha=0.2)
    plt.plot(x_test.flatten(), y_hat, color='red', label='Posterior mean')
    plt.legend(loc=0)
    a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()
    r = fig.add_subplot(2, 1, 2)
    r.set_title('Acquisition function')
    plt.plot(x_test, a, color='green')
    gpgo._optimizeAcq(method='L-BFGS-B', n_start=1000)
    plt.axvline(x=gpgo.best, color='black', label='Found optima')
    plt.legend(loc=0)
    plt.tight_layout()
    plt.savefig(os.path.join(os.getcwd(), 'mthesis_text/figures/chapter3/sine/{}.pdf'.format(i)))
    plt.show() 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:24,代碼來源:example1d.py


注:本文中的matplotlib.pyplot.axvline方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。