本文整理匯總了Python中matplotlib.pyplot.axes方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.axes方法的具體用法?Python pyplot.axes怎麽用?Python pyplot.axes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.axes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _show_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
plt.locator_params(axis='y', nbins=3)
axes = plt.axes()
axes.yaxis.grid()
plt.plot(x_values, y_values, 'ro', color='red')
plt.ylim(ymin=-1.2, ymax=1.2)
plt.tight_layout(pad=5)
if x_labels:
plt.xticks(x_values, x_labels, rotation='vertical')
if y_labels:
plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
# Pad margins so that markers are not clipped by the axes
plt.margins(0.2)
plt.show()
#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#////////////////////////////////////////////////////////////
示例2: analyseSex
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def analyseSex(firends):
sexs = list(map(lambda x:x['Sex'],friends[1:]))
counts = Counter(sexs).items()
counts = sorted(counts, key=lambda x:x[0], reverse=False)
counts = list(map(lambda x:x[1],counts))
labels = ['Unknow','Male','Female']
colors = ['red','yellowgreen','lightskyblue']
plt.figure(figsize=(8,5), dpi=80)
plt.axes(aspect=1)
plt.pie(counts,
labels=labels,
colors=colors,
labeldistance = 1.1,
autopct = '%3.1f%%',
shadow = False,
startangle = 90,
pctdistance = 0.6
)
plt.legend(loc='upper right',)
plt.title(u'%s的微信好友性別組成' % friends[0]['NickName'])
plt.show()
示例3: _plot_gaussian
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def _plot_gaussian(mean, covariance, color, zorder=0):
"""Plots the mean and 2-std ellipse of a given Gaussian"""
plt.plot(mean[0], mean[1], color[0] + ".", zorder=zorder)
if covariance.ndim == 1:
covariance = np.diag(covariance)
radius = np.sqrt(5.991)
eigvals, eigvecs = np.linalg.eig(covariance)
axis = np.sqrt(eigvals) * radius
slope = eigvecs[1][0] / eigvecs[1][1]
angle = 180.0 * np.arctan(slope) / np.pi
plt.axes().add_artist(pat.Ellipse(
mean, 2 * axis[0], 2 * axis[1], angle=angle,
fill=False, color=color, linewidth=1, zorder=zorder
))
示例4: plot_fitted_data
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def plot_fitted_data(points, c_means, c_variances):
"""Plots the data and given Gaussian components"""
plt.plot(points[:, 0], points[:, 1], "b.", zorder=0)
plt.plot(c_means[:, 0], c_means[:, 1], "r.", zorder=1)
for i in range(c_means.shape[0]):
std = np.sqrt(c_variances[i])
plt.axes().add_artist(pat.Ellipse(
c_means[i], 2 * std[0], 2 * std[1],
fill=False, color="red", linewidth=2, zorder=1
))
plt.show()
# PREPARING DATA
# generating DATA_POINTS points from a GMM with COMPONENTS components
示例5: ts_anim
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def ts_anim():
# create a simple animation
fig = plt.figure()
ax = plt.axes(xlim=(0, 100), ylim=(-1, 1))
Color = [ 1 ,0.498039, 0.313725];
line, = ax.plot([], [], '*',color = Color)
plt.xlabel("Time")
plt.ylabel("Measurement")
def init():
line.set_data([], [])
return line,
def animate(i):
x = np.linspace(0, i+1, i+1)
ts = 5*np.cos(x * 0.02 * np.pi) * np.sin(np.cos(x) * 0.02 * np.pi)
line.set_data(x, ts)
return line,
return animation.FuncAnimation(fig, animate, init_func=init,
frames=100, interval=200, blit=True)
示例6: basic_animation
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def basic_animation(frames=100, interval=30):
"""Plot a basic sine wave with oscillating amplitude"""
fig = plt.figure()
ax = plt.axes(xlim=(0, 10), ylim=(-2, 2))
line, = ax.plot([], [], lw=2)
x = np.linspace(0, 10, 1000)
def init():
line.set_data([], [])
return line,
def animate(i):
y = np.cos(i * 0.02 * np.pi) * np.sin(x - i * 0.02 * np.pi)
line.set_data(x, y)
return line,
return animation.FuncAnimation(fig, animate, init_func=init,
frames=frames, interval=interval)
示例7: plot_DOY
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def plot_DOY(dates, y, mpl_cmap):
""" Create a DOY plot
Args:
dates (iterable): sequence of datetime
y (np.ndarray): variable to plot
mpl_cmap (colormap): matplotlib colormap
"""
doy = np.array([d.timetuple().tm_yday for d in dates])
year = np.array([d.year for d in dates])
sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
marker='o', edgecolors='none', s=35)
plt.colorbar(sp)
months = mpl.dates.MonthLocator() # every month
months_fmrt = mpl.dates.DateFormatter('%b')
plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
plt.axes().xaxis.set_minor_locator(months)
plt.axes().xaxis.set_minor_formatter(months_fmrt)
plt.xlim(1, 366)
plt.xlabel('Day of Year')
示例8: _plot_spectra
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def _plot_spectra(outpath, typ, savefig=True):
spec = alf.io.load_object(outpath, '_iblqc_ephysSpectralDensity' + typ.upper())
sns.set_style("whitegrid")
plt.figure(figsize=[9, 4.5])
ax = plt.axes()
ax.plot(spec['freqs'], 20 * np.log10(spec['power'] + 1e-14),
linewidth=0.5, color=[0.5, 0.5, 0.5])
ax.plot(spec['freqs'], 20 * np.log10(np.median(spec['power'] + 1e-14, axis=1)), label='median')
ax.set_xlabel(r'Frequency (Hz)')
ax.set_ylabel(r'dB rel to $V^2.$Hz$^{-1}$')
if typ == 'ap':
ax.set_ylim([-275, -125])
elif typ == 'lf':
ax.set_ylim([-260, -60])
ax.legend()
if savefig:
plt.savefig(outpath / (typ + '_spec.png'), dpi=150)
示例9: _plot_rmsmap
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def _plot_rmsmap(outfil, typ, savefig=True):
rmsmap = alf.io.load_object(outpath, '_iblqc_ephysTimeRms' + typ.upper())
plt.figure(figsize=[12, 4.5])
axim = plt.axes([0.2, 0.1, 0.7, 0.8])
axrms = plt.axes([0.05, 0.1, 0.15, 0.8])
axcb = plt.axes([0.92, 0.1, 0.02, 0.8])
axrms.plot(np.median(rmsmap['rms'], axis=0)[:-1] * 1e6, np.arange(1, rmsmap['rms'].shape[1]))
axrms.set_ylim(0, rmsmap['rms'].shape[1])
im = axim.imshow(20 * np.log10(rmsmap['rms'].T + 1e-15), aspect='auto', origin='lower',
extent=[rmsmap['timestamps'][0], rmsmap['timestamps'][-1],
0, rmsmap['rms'].shape[1]])
axim.set_xlabel(r'Time (s)')
axim.set_ylabel(r'Channel Number')
plt.colorbar(im, cax=axcb)
if typ == 'ap':
im.set_clim(-110, -90)
axrms.set_xlim(100, 0)
elif typ == 'lf':
im.set_clim(-100, -60)
axrms.set_xlim(500, 0)
axim.set_xlim(0, 4000)
if savefig:
plt.savefig(outpath / (typ + '_rms.png'), dpi=150)
示例10: blank_axes
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def blank_axes(ax):
"""
blank_axes: blank the extraneous spines and tick marks for an axes
Input:
ax: a matplotlib Axes object
Output: None
"""
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
ax.tick_params(labelbottom='off', labeltop='off', labelleft='off', labelright='off', \
bottom='off', top='off', left='off', right='off')
# end blank_axes
#######################################################
# MAIN
#######################################################
示例11: vis
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def vis(embed, vis_alg='PCA', pool_alg='REDUCE_MEAN'):
plt.close()
fig = plt.figure()
plt.rcParams['figure.figsize'] = [21, 7]
for idx, ebd in enumerate(embed):
ax = plt.subplot(2, 6, idx + 1)
vis_x = ebd[:, 0]
vis_y = ebd[:, 1]
plt.scatter(vis_x, vis_y, c=subset_label, cmap=ListedColormap(["blue", "green", "yellow", "red"]), marker='.',
alpha=0.7, s=2)
ax.set_title('pool_layer=-%d' % (idx + 1))
plt.tight_layout()
plt.subplots_adjust(bottom=0.1, right=0.95, top=0.9)
cax = plt.axes([0.96, 0.1, 0.01, 0.3])
cbar = plt.colorbar(cax=cax, ticks=range(num_label))
cbar.ax.get_yaxis().set_ticks([])
for j, lab in enumerate(['ent.', 'bus.', 'sci.', 'heal.']):
cbar.ax.text(.5, (2 * j + 1) / 8.0, lab, ha='center', va='center', rotation=270)
fig.suptitle('%s visualization of BERT layers using "bert-as-service" (-pool_strategy=%s)' % (vis_alg, pool_alg),
fontsize=14)
plt.show()
示例12: plot_dterms
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def plot_dterms(self, sites='all', label=None, legend=True, clist=ehc.SCOLORS,
rangex=False, rangey=False, markersize=2 * ehc.MARKERSIZE,
show=True, grid=True, export_pdf=""):
# sites
if sites in ['all' or 'All'] or sites == []:
sites = list(self.data.keys())
if not isinstance(sites, list):
sites = [sites]
keys = [self.tkey[site] for site in sites]
axes = plot_tarr_dterms(self.tarr, keys=keys, label=label, legend=legend, clist=clist,
rangex=rangex, rangey=rangey, markersize=markersize,
show=show, grid=grid, export_pdf=export_pdf)
return axes
示例13: plot_convergence
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def plot_convergence(self, filename=None):
yy = self.iter_values
xx = range(len(yy))
import matplotlib.pyplot as plt
# Plot
plt.ioff()
fig = plt.figure()
fig.set_size_inches(18.5, 10.5)
font = {'size': 28}
plt.title('Value over # evaluations')
plt.xlabel('X', fontdict=font)
plt.ylabel('Y', fontdict=font)
plt.plot(xx, yy)
plt.axes().set_yscale('log')
if filename is None:
filename = 'plots/iter.png'
plt.savefig(filename, bbox_inches='tight')
plt.close(fig)
print('plotting convergence OK.. ' + filename)
示例14: draw_chessboard_model
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def draw_chessboard_model(marker_size=marker_size):
gird_coords = generate_grid_coords(x_res=marker_size[0], y_res=marker_size[1])
grid_ls = [(p[0]).flatten()[:2] for p in gird_coords]
corner_arr = np.transpose(np.array(grid_ls).reshape(marker_size[0], marker_size[1], 2)[1:, 1:], (1, 0, 2))
c = np.zeros([corner_arr.shape[0], corner_arr.shape[1], 3]).reshape(
corner_arr.shape[0] * corner_arr.shape[1], 3).astype(np.float32)
c[0] = np.array([0, 0, 1])
c[-1] = np.array([1, 0, 0])
s = np.zeros(corner_arr[:, :, 0].flatten().shape[0]) + 20
s[0] = 60
s[-1] = 60
plt.scatter(corner_arr[:, :, 0].flatten(), corner_arr[:, :, 1].flatten(), c=c, s=s)
plt.plot(corner_arr[:, :, 0].flatten(), corner_arr[:, :, 1].flatten())
plt.xlim(corner_arr[:, :, 0].min(), corner_arr[:, :, 0].max())
plt.ylim(corner_arr[:, :, 1].min(), corner_arr[:, :, 1].max())
plt.xlabel("x coordinates [cm]")
plt.ylabel("y coordinates [cm]")
# plt.axes().set_aspect('equal', 'datalim')
plt.axis('equal')
plt.show()
示例15: view_polygons
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import axes [as 別名]
def view_polygons(polygons):
"""Display a collection of polygons for inspection.
:param polygons: A dict keyed by colour, containing Polygon3D objects to show in that colour.
"""
# create the figure and add the surfaces
plt.figure()
ax = plt.axes(projection="3d")
collections = _make_collections(polygons, opacity=0.5)
for c in collections:
ax.add_collection3d(c)
# calculate and set the axis limits
limits = _get_limits(polygons=polygons)
ax.set_xlim(limits["x"])
ax.set_ylim(limits["y"])
ax.set_zlim(limits["z"])
plt.show()