本文整理匯總了Python中matplotlib.pyplot.autoscale方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.autoscale方法的具體用法?Python pyplot.autoscale怎麽用?Python pyplot.autoscale使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.autoscale方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_use_sticky_edges
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def test_use_sticky_edges():
fig, ax = plt.subplots()
ax.imshow([[0, 1], [2, 3]], origin='lower')
assert_allclose(ax.get_xlim(), (-0.5, 1.5))
assert_allclose(ax.get_ylim(), (-0.5, 1.5))
ax.use_sticky_edges = False
ax.autoscale()
xlim = (-0.5 - 2 * ax._xmargin, 1.5 + 2 * ax._xmargin)
ylim = (-0.5 - 2 * ax._ymargin, 1.5 + 2 * ax._ymargin)
assert_allclose(ax.get_xlim(), xlim)
assert_allclose(ax.get_ylim(), ylim)
# Make sure it is reversible:
ax.use_sticky_edges = True
ax.autoscale()
assert_allclose(ax.get_xlim(), (-0.5, 1.5))
assert_allclose(ax.get_ylim(), (-0.5, 1.5))
示例2: full_frame
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def full_frame(plt, width=0.64, height=0.64):
r"""
Generates a particular tight layout for Pyplot plots
:param plt: pyplot
:param width: width, default is 64 pixels
:param height: height, default is 64 pixels
:return:
"""
import matplotlib as mpl
mpl.rcParams['savefig.pad_inches'] = 0
figsize = None if width is None else (width, height)
fig = plt.figure(figsize=figsize)
ax = plt.axes([0, 0, 1, 1], frameon=False)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.autoscale(tight=True)
示例3: full_frame_high_res
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def full_frame_high_res(plt, width=3.2, height=3.2):
r"""
Generates a particular tight layout for Pyplot plots, at higher resolution
:param plt: pyplot
:param width: width, default is 320 pixels
:param height: height, default is 320 pixels
:return:
"""
import matplotlib as mpl
mpl.rcParams['savefig.pad_inches'] = 0
figsize = None if width is None else (width, height)
fig = plt.figure(figsize=figsize)
ax = plt.axes([0, 0, 1, 1], frameon=False)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.autoscale(tight=True)
示例4: pos_analysis
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def pos_analysis(data):
"""
Analyze position.
"""
tmerc_map = mapping.create_map(data.GPS_Lon.values, data.GPS_Lat.values)
gps_y, gps_x = tmerc_map(data.GPS_Lon.values, data.GPS_Lat.values)
gpos_y, gpos_x = tmerc_map(data.GPOS_Lon.values, data.GPOS_Lat.values)
gpsp_y, gpsp_x = tmerc_map(
data.GPSP_Lon[np.isfinite(data.GPSP_Lon.values)].values,
data.GPSP_Lat[np.isfinite(data.GPSP_Lat.values)].values)
import matplotlib.pyplot as plt
plt.plot(gpos_y, gpos_x, '.', label='est')
plt.plot(gps_y, gps_x, 'x', label='GPS')
plt.plot(gpsp_y, gpsp_x, 'ro', label='cmd')
plt.xlabel('E, m')
plt.ylabel('N, m')
plt.grid()
plt.autoscale(True, 'both', True)
plt.legend(loc='best')
return locals()
示例5: plot_subimage
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def plot_subimage(self, img, ax=None, show=True, fontsize=10):
# img: {'actual', 'expected', 'gamma'}
if ax is None:
ax = plt.subplot()
ax.tick_params(axis='both', labelsize=8)
if img in ('actual', 'expected'):
title = img.capitalize() + ' Fluence'
plt.imshow(getattr(self.fluence, img).array.astype(np.float32), aspect='auto', interpolation='none',
cmap=get_array_cmap())
elif img == 'gamma':
plt.imshow(getattr(self.fluence, img).array.astype(np.float32), aspect='auto', interpolation='none', vmax=1,
cmap=get_array_cmap())
plt.colorbar(ax=ax)
title = 'Gamma Map'
ax.autoscale(tight=True)
ax.set_title(title, fontsize=fontsize)
if show:
plt.show()
示例6: plot_profiles
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def plot_profiles(self, axis=None):
"""Plot the horizontal and vertical profiles of the Uniformity slice.
Parameters
----------
axis : None, matplotlib.Axes
The axis to plot on; if None, will create a new figure.
"""
if axis is None:
fig, axis = plt.subplots()
horiz_data = self.image[int(self.phan_center.y), :]
vert_data = self.image[:, int(self.phan_center.x)]
axis.plot(horiz_data, 'g', label='Horizontal')
axis.plot(vert_data, 'b', label='Vertical')
axis.autoscale(tight=True)
axis.axhline(self.tolerance, color='r', linewidth=3)
axis.axhline(-self.tolerance, color='r', linewidth=3)
axis.grid(True)
axis.set_ylabel("HU")
axis.legend(loc=8, fontsize='small', title="")
axis.set_title("Uniformity Profiles")
示例7: plot_models
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def plot_models(x, y, models, fname, mx=None, ymax=None, xmin=None):
plt.figure(num=None, figsize=(8, 6))
plt.clf()
plt.scatter(x, y, s=10)
plt.title("Web traffic over the last month")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks(
[w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])
if models:
if mx is None:
mx = sp.linspace(0, x[-1], 1000)
for model, style, color in zip(models, linestyles, colors):
# print "Model:",model
# print "Coeffs:",model.coeffs
plt.plot(mx, model(mx), linestyle=style, linewidth=2, c=color)
plt.legend(["d=%i" % m.order for m in models], loc="upper left")
plt.autoscale(tight=True)
plt.ylim(ymin=0)
if ymax:
plt.ylim(ymax=ymax)
if xmin:
plt.xlim(xmin=xmin)
plt.grid(True, linestyle='-', color='0.75')
plt.savefig(fname)
# first look at the data
開發者ID:PacktPublishing,項目名稱:Building-Machine-Learning-Systems-With-Python-Second-Edition,代碼行數:33,代碼來源:analyze_webstats.py
示例8: test_autoscale_tight
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def test_autoscale_tight():
fig, ax = plt.subplots(1, 1)
ax.plot([1, 2, 3, 4])
ax.autoscale(enable=True, axis='x', tight=False)
ax.autoscale(enable=True, axis='y', tight=True)
assert_allclose(ax.get_xlim(), (-0.15, 3.15))
assert_allclose(ax.get_ylim(), (1.0, 4.0))
示例9: test_autoscale_log_shared
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def test_autoscale_log_shared():
# related to github #7587
# array starts at zero to trigger _minpos handling
x = np.arange(100, dtype=float)
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.loglog(x, x)
ax2.semilogx(x, x)
ax1.autoscale(tight=True)
ax2.autoscale(tight=True)
plt.draw()
lims = (x[1], x[-1])
assert_allclose(ax1.get_xlim(), lims)
assert_allclose(ax1.get_ylim(), lims)
assert_allclose(ax2.get_xlim(), lims)
assert_allclose(ax2.get_ylim(), (x[0], x[-1]))
示例10: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/loadaverage.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
m1.append(row[3])
m5.append(row[4])
m15.append(row[5])
# Plot lines
plt.plot(x,m1, label='1 min', color='g', antialiased=True)
plt.plot(x,m5, label='5 min', color='r', antialiased=True)
plt.plot(x,m15, label='15 min', color='b', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('Load average',fontstyle='italic')
plt.title('Load average graph')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/loadaverage.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================
示例11: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/ram.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
free_mem.append(str((int(row[1])/1024)+(int(row[4])/1024)+(int(row[5])/1024)))
used_mem.append(str((int(row[2])/1024)-(int(row[4])/1024)-(int(row[5])/1024)))
buffer_mem.append(str(int(row[4])/1024))
cached_mem.append(str(int(row[5])/1024))
# Plot lines
plt.plot(x,free_mem, label='Free', color='g', antialiased=True)
plt.plot(x,used_mem, label='Used', color='r', antialiased=True)
plt.plot(x,buffer_mem, label='Buffer', color='b', antialiased=True)
plt.plot(x,cached_mem, label='Cached', color='c', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('Memory (MB)',fontstyle='italic')
plt.title('RAM usage graph')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/ram.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================
示例12: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/swap.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
swap_free.append(str(int(row[1])/1024))
swap_used.append(str(int(row[2])/1024))
# Plot lines
plt.plot(x,swap_used, label='Used', color='r', antialiased=True)
plt.plot(x,swap_free, label='Free', color='g', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('SWAP (MB)',fontstyle='italic')
plt.title('SWAP usage graph')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/swap.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================
示例13: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/proc.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
procs_per_second.append(row[1])
# Plot lines
plt.plot(x,procs_per_second, label='Processes created per second', color='r', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('Processes',fontstyle='italic')
plt.title('Processes created per second graph')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/proc.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================
示例14: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/loadaverage.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
t_run_queue.append(row[1])
t_total.append(row[2])
t_blocked.append(row[6])
# Plot lines
plt.plot(x,t_run_queue, label='Tasks in run queue', color='g', antialiased=True)
plt.plot(x,t_total, label='Total active tasks (processes + threads)', color='r', antialiased=True)
plt.plot(x,t_blocked, label='Blocked tasks', color='m', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('Tasks',fontstyle='italic')
plt.title('Tasks graph')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/tasks.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================
示例15: generate_graph
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import autoscale [as 別名]
def generate_graph():
with open('../../data/netinterface.dat', 'r') as csvfile:
data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True)
for row in data_source:
# [0] column is a time column
# Convert to datetime data type
a = datetime.strptime((row[0]),'%H:%M:%S')
x.append((a))
# The remaining columns contain data
r_kb.append(row[4])
s_kb.append(row[5])
# Plot lines
plt.plot(x,r_kb, label='Kilobytes received per second', color='#009973', antialiased=True)
plt.plot(x,s_kb, label='Kilobytes sent per second', color='#b3b300', antialiased=True)
# Graph properties
plt.xlabel('Time',fontstyle='italic')
plt.ylabel('Kb/s',fontstyle='italic')
plt.title('Network statistics')
plt.grid(linewidth=0.4, antialiased=True)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.18), ncol=2, fancybox=True, shadow=True)
plt.autoscale(True)
# Graph saved to PNG file
plt.savefig('../../graphs/netinterface.png', bbox_inches='tight')
#plt.show()
# ======================
# MAIN
# ======================