本文整理匯總了Python中matplotlib.pyplot.arrow方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.arrow方法的具體用法?Python pyplot.arrow怎麽用?Python pyplot.arrow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.arrow方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot2d
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def plot2d(self,ix=0,iy=1,clf=True):
"""
Generates a 2-dimensional plot of the data set and principle components
using matplotlib.
ix specifies which p-dimension to put on the x-axis of the plot
and iy specifies which to put on the y-axis (0-indexed)
"""
import matplotlib.pyplot as plt
x,y=self.N[:,ix],self.N[:,iy]
if clf:
plt.clf()
plt.scatter(x,y)
vals,evs=self.getEigensystem()
#evx,evy=evs[:,ix],evs[:,iy]
xl,xu=plt.xlim()
yl,yu=plt.ylim()
dx,dy=(xu-xl),(yu-yl)
for val,vec,c in zip(vals,evs.T,self._colors):
plt.arrow(0,0,val*vec[ix],val*vec[iy],head_width=0.05*(dx*dy/4)**0.5,fc=c,ec=c)
#plt.arrow(0,0,vals[ix]*evs[ix,ix],vals[ix]*evs[iy,ix],head_width=0.05*(dx*dy/4)**0.5,fc='g',ec='g')
#plt.arrow(0,0,vals[iy]*evs[ix,iy],vals[iy]*evs[iy,iy],head_width=0.05*(dx*dy/4)**0.5,fc='r',ec='r')
if self.names is not None:
plt.xlabel('$'+self.names[ix]+'/\\sigma$')
plt.ylabel('$'+self.names[iy]+'/\\sigma$')
示例2: poly_plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def poly_plot(xy, titlestr = "", margin = 0.25):
"""
Plots polygon. For arrow see:
http://matplotlib.org/examples/pylab_examples/arrow_simple_demo.html
x = xy[:,0], y = xy[:,1]
"""
xmin = np.min(xy[:,0])
xmax = np.max(xy[:,0])
ymin = np.min(xy[:,1])
ymax = np.max(xy[:,1])
hl = 0.1
l = len(xy)
for i in range(l):
j = (i+1)%l # keep index in [0,l)
dx = xy[j,0] - xy[i,0]
dy = xy[j,1] - xy[i,1]
dd = np.sqrt(dx*dx + dy*dy)
dx *= (1 - hl/dd)
dy *= (1 - hl/dd)
plt.arrow(xy[i,0], xy[i,1], dx, dy, head_width=0.05, head_length=0.1, fc='b', ec='b')
plt.xlim(xmin-margin, xmax+margin)
plt.ylim(ymin-margin, ymax+margin)
plt.title(titlestr)
示例3: plot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def plot(self, linewidth=None, linestyle='-',
startarrows=True, endarrows=True):
"""Plots the field line and arrows."""
if linewidth is None:
linewidth = matplotlib.rcParams['lines.linewidth']
x, y = zip(*self.x)
pyplot.plot(x, y, '-k', linewidth=linewidth, linestyle=linestyle)
n = int(len(x)/2) if len(x) < 225 else 75
if startarrows:
pyplot.arrow(x[n], y[n], (x[n+1]-x[n])/100., (y[n+1]-y[n])/100.,
fc="k", ec="k",
head_width=0.1*linewidth, head_length=0.1*linewidth)
if len(x) < 225 or not endarrows:
return
pyplot.arrow(x[-n], y[-n],
(x[-n+1]-x[-n])/100., (y[-n+1]-y[-n])/100.,
fc="k", ec="k",
head_width=0.1*linewidth, head_length=0.1*linewidth)
示例4: plot_cell_transitions
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def plot_cell_transitions(self, cell_ix: int=0, alpha: float=0.1, alpha_neigh: float=0.2,
cmap_name: str="RdBu_r", plot_arrow: bool=True,
mark_cell: bool=True, head_width: int=3) -> None:
"""Plot the probability of a cell to transition to any other cell
This function is untested
"""
cmap = plt.cm.get_cmap(name=cmap_name)
colorandum = np.ones((self.embedding.shape[0], 4))
colorandum *= 0.3
colorandum[:, -1] = alpha
plt.scatter(self.embedding[:, 0], self.embedding[:, 1],
c=colorandum, s=50, edgecolor="")
if mark_cell:
plt.scatter(self.embedding[cell_ix, 0], self.embedding[cell_ix, 1],
facecolor="none", s=100, edgecolor="k")
if plot_arrow:
plt.arrow(self.embedding[cell_ix, 0], self.embedding[cell_ix, 1],
self.delta_embedding[cell_ix, 0], self.delta_embedding[cell_ix, 1],
head_width=head_width, length_includes_head=True)
示例5: draw_es
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def draw_es(id_to_coords, connections, filename):
fig = plt.figure()
plt.axis([-1.1, 1.1, -1.1, 1.1])
fig.add_subplot(111)
for c in connections:
color = 'red'
if c.weight > 0.0:
color = 'black'
plt.arrow(c.x1, c.y1, c.x2-c.x1, c.y2-c.y1, head_width=0.00, head_length=0.0,
fc=color, ec=color, length_includes_head = True)
for (coord, idx) in id_to_coords.iteritems():
plt.plot(coord[0], coord[1], marker='o', markersize=8.0, color='grey')
plt.grid()
fig.savefig(filename)
示例6: plot_links
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def plot_links(
graph, color="b", linestyle="solid", with_id=True, as_arrow=True, linewidth=None
):
if as_arrow:
head_width = 0.1
else:
head_width = 0.0
for link, nodes in enumerate(graph.nodes_at_link):
x, y = graph.x_of_node[nodes[0]], graph.y_of_node[nodes[0]]
dx, dy = graph.x_of_node[nodes[1]] - x, graph.y_of_node[nodes[1]] - y
plt.arrow(
x,
y,
dx,
dy,
head_width=head_width,
linewidth=linewidth,
length_includes_head=True,
color=color,
linestyle=linestyle,
)
if with_id:
plt.text(x + dx * 0.5, y + dy * 0.5, link, size=16, color=color)
示例7: subplot
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def subplot(N, n, i, title=True):
ax = fig.add_subplot(N, 1, i)
image = np.array(x[n]).T
ax.imshow(image, cmap=plt.cm.gray, interpolation="nearest")
if title:
if n == 0:
ax.set_title('Before training', **title_font)
else:
num = str(n)
if len(num) > 3:
num = num[:-3] + "," + num[-3:]
if len(num) > 7:
num = num[:-7] + "," + num[-7:]
ax.set_title('After training ' + num + " times", **title_font)
plt.tick_params(axis='both', which='both', bottom='off', top='off',
right="off", left="off", labelleft="off",
labelbottom='off')
if i == N:
xlim = ax.get_xlim()
ylim = ax.get_ylim()
plt.arrow(xlim[0], ylim[0] + 1, xlim[1] - xlim[0] - 1.5, 0, width=.1,
color="k", clip_on=False, head_width=1., head_length=1.5)
示例8: _draw_port
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def _draw_port(ax, port, arrow_scale, color):
# x,y = port.midpoint
nv = port.normal
n = (nv[1]-nv[0])
dx,dy = n*port.width/8*arrow_scale
dx += n[1]*port.width/8*arrow_scale
dy += n[0]*port.width/8*arrow_scale
# dx,dy = np.array(np.cos(port.orientation/180*np.pi), np.sin(port.orientation/180*np.pi))*port.width/10*arrow_scale + \
# np.array(np.cos((port.orientation+90)/180*np.pi), np.sin((port.orientation+90)/180*np.pi))*port.width/4*arrow_scale
# print(port.midpoint)
# print(port.width)
# print(nv)
xbound, ybound = np.column_stack(port.endpoints)
#plt.plot(x, y, 'rp', markersize = 12) # Draw port midpoint
arrow_points = np.array([[0,0],[10,0],[6,4],[6,2],[0,2]])/(40)*port.width*arrow_scale
arrow_points += port.midpoint
arrow_points = _rotate_points(arrow_points, angle = port.orientation, center = port.midpoint)
xmin,ymin = np.min(np.vstack([arrow_points,port.endpoints]), axis = 0)
xmax,ymax = np.max(np.vstack([arrow_points,port.endpoints]), axis = 0)
ax.plot(xbound, ybound, alpha = 0.5, linewidth = 3, color = color) # Draw port edge
ax.plot(arrow_points[:,0], arrow_points[:,1], alpha = 0.5, linewidth = 1, color = color) # Draw port edge
# plt.arrow(x, y, dx, dy,length_includes_head=True, width = 0.1*arrow_scale,
# head_width=0.3*arrow_scale, alpha = 0.5, **kwargs)
ax.text(port.midpoint[0]+dx, port.midpoint[1]+dy, port.name,
horizontalalignment = 'center', verticalalignment = 'center', fontsize = 14)
bbox = [xmin,ymin,xmax,ymax]
return bbox
示例9: clink_handler
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def clink_handler(sxy, exy, style, offsets, roundness, head_length):
'''a C style link between two edges.'''
nturn = len(offsets)
offsets = np.asarray(offsets)
unit_t = (exy - sxy)/norm(exy - sxy)
unit_l = rotate(unit_t, np.pi/2.)
vl, vr = [sxy], [exy]
# get arrow locations and directions
# - first, get head and tail vector.
arrows = []
unit_head_vec = (-unit_t if nturn%2==0 else unit_l)*(np.sign(offsets[0]) if len(offsets)!=0 else -1)
sign_eo = -1 if nturn%2 == 0 else 1
unit_tail_vec = unit_head_vec * sign_eo
head_vec = unit_head_vec * head_length
tail_vec = unit_tail_vec * head_length
if style[0] in ['<', '>']:
sign = (1 if style[0]=='>' else -1)
arrows.append((sxy+head_vec*0.6, unit_head_vec * sign))
style = style[1:]
vl[0] = vl[0] + head_vec
if style[-1] in ['<', '>']:
sign = (-1 if style[-1]=='>' else 1)
arrows.append((exy+tail_vec*0.6, unit_tail_vec * sign))
style = style[:-1]
vr[0] = vr[0] + tail_vec
# get path
ls = style
if len(ls) !=1:
raise ValueError('style must contain exactly 1 line style code.')
for i, dxy in enumerate(offsets):
sxy = sxy + (-unit_t if i%2 == nturn%2 else unit_l)*dxy
exy = exy + (unit_t if i%2 == nturn%2 else unit_l)*dxy
vl.append(sxy)
vr.append(exy)
return arrows, [(ls, rounded_path(vl+vr[::-1], roundness))], (vl[-1], vr[-1])
示例10: basicline_handler
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def basicline_handler(sxy, exy, style, head_length):
'''draw a line between start and end.'''
# the distance and unit distance
d = np.asarray(exy) - sxy
unit_d = d / norm(d)
# get arrow locations.
arrows = []
segs = []
for s in style:
if s in ['>', '<']:
sign = 1 if s == '>' else -1
arrows.append([len(segs), sign*unit_d])
else:
segs.append(s)
head_vec = unit_d * head_length
vec_d = d - head_vec * 1.2
num_segs = len(segs)
for al in arrows:
al[0] = al[0] * vec_d / max(num_segs, 1) + sxy + 0.6 * head_vec
# get the line locations.
uni = d / num_segs
lines = []
end = start = sxy
seg_pre = ''
for seg in segs:
if seg != seg_pre and seg_pre != '':
lines.append([seg_pre, [start, end]])
start = end
seg_pre = seg
end = end + uni
lines.append([seg, [start, end]])
# fix end of line
if style[-1] in ['<', '>']:
lines[-1][1][1] -= head_vec
if style[0] in ['<', '>']:
lines[0][1][0] += head_vec
return arrows, lines
示例11: _arrow
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def _arrow(ax, mxy, direction, head_width, head_length, lw, zorder, color):
'''draw an arrow.'''
head_vec = direction * head_length
mxy = mxy - head_vec * 0.6
dx, dy = direction
obj = plt.arrow(*mxy, 1e-8 * dx, 1e-8 * dy,
head_length=head_length, width=0,
head_width=head_width, fc=color,
length_includes_head=False, lw=lw, edgecolor=color, zorder=zorder)
return obj
示例12: draw
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def draw(x, y):
# set up range of the plot
limit = max(x, y) + 1
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_aspect('equal')
# lines corresponding to x- and y-coordinates
plt.plot([x, x], [0, y], '-', c='blue', linewidth=3)
plt.plot([0, x], [y, y], '-', c='blue', linewidth=3)
plt.scatter(x, y, s=100, marker='o', c='red') # actual point
ax.set_xlim((-limit, limit))
ax.set_ylim((-limit, limit))
# axis arrows
left, right = ax.get_xlim()
bottom, top = ax.get_ylim()
plt.arrow(left, 0, right - left, 0, length_includes_head=True,
head_width=0.15)
plt.arrow(0, bottom, 0, top - bottom, length_includes_head=True,
head_width=0.15)
plt.grid()
plt.show()
示例13: show_assignments
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def show_assignments(a, b, P, title=""):
norm_P = P / P.max()
for i in range(a.shape[0]):
for j in range(b.shape[0]):
plt.arrow(a[i, 0], a[i, 1], b[j, 0] - a[i, 0], b[j, 1] - a[i, 1],
alpha=norm_P[i, j].item() / 2)
plt.scatter(a[:, 0], a[:, 1], label="target")
plt.scatter(b[:, 0], b[:, 1], label="prediction")
plt.axis('off')
plt.legend(prop={'size': 20})
plt.title(f'StreetMover: {title[:6]}', fontsize=25)
plt.tight_layout()
# plt.show()
plt.savefig(f"./sinkhorn/wass{title}.png")
plt.clf()
示例14: visualize_values
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def visualize_values(mdp, values, policy, filename, title=None):
states = mdp.states
# print states
plt.clf()
m = max(states, key=lambda x: x[0])[0] + 1
n = max(states, key=lambda x: x[1])[1] + 1
data = np.zeros((m,n))
for i in range(m):
for j in range(n):
state = (i,j)
if type(values) == dict:
data[i][j] = values[state]
else:
# print values[i][j]
data[i][j] = values[i][j]
action = policy[state]
## if using all_reachable actions, pick the best one
if type(action) == tuple:
action = action[0]
if action != None:
x, y, w, h = arrow(i, j, action)
plt.arrow(x,y,w,h,head_length=0.4,head_width=0.4,fc='k',ec='k')
heatmap = plt.pcolor(data, cmap=plt.get_cmap('jet'))
plt.colorbar()
plt.gca().invert_yaxis()
if title:
plt.title(title)
plt.savefig(filename + '.png')
# print data
示例15: arrow
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import arrow [as 別名]
def arrow(i, j, action):
## up, down, left, right
## x, y, w, h
arrows = {0: (.5,.95,0,-.4), 1: (.5,.05,0,.4), 2: (.95,.5,-.4,0), 3: (.05,.5,.4,0)}
arrow = arrows[action]
return j+arrow[0], i+arrow[1], arrow[2], arrow[3]