本文整理匯總了Python中matplotlib.pyplot.MaxNLocator方法的典型用法代碼示例。如果您正苦於以下問題:Python pyplot.MaxNLocator方法的具體用法?Python pyplot.MaxNLocator怎麽用?Python pyplot.MaxNLocator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.MaxNLocator方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_overlap_matrix
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_overlap_matrix(overlap_matrix, color_map="bwr"):
"""
Visualizes the pattern overlap
Args:
overlap_matrix:
color_map:
"""
plt.imshow(overlap_matrix, interpolation="nearest", cmap=color_map)
plt.title("pattern overlap m(i,k)")
plt.xlabel("pattern k")
plt.ylabel("pattern i")
plt.axes().get_xaxis().set_major_locator(plt.MaxNLocator(integer=True))
plt.axes().get_yaxis().set_major_locator(plt.MaxNLocator(integer=True))
cb = plt.colorbar(ticks=np.arange(-1, 1.01, 0.25).tolist())
cb.set_clim(-1, 1)
plt.show()
示例2: test_contourf_symmetric_locator
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def test_contourf_symmetric_locator():
# github issue 7271
z = np.arange(12).reshape((3, 4))
locator = plt.MaxNLocator(nbins=4, symmetric=True)
cs = plt.contourf(z, locator=locator)
assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))
示例3: plot_state_sequence_and_overlap
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_state_sequence_and_overlap(state_sequence, pattern_list, reference_idx, color_map="brg", suptitle=None):
"""
For each time point t ( = index of state_sequence), plots the sequence of states and the overlap (barplot)
between state(t) and each pattern.
Args:
state_sequence: (list(numpy.ndarray))
pattern_list: (list(numpy.ndarray))
reference_idx: (int) identifies the pattern in pattern_list for which wrong pixels are colored.
"""
if reference_idx is None:
reference_idx = 0
reference = pattern_list[reference_idx]
f, ax = plt.subplots(2, len(state_sequence))
if len(state_sequence) == 1:
ax = [ax]
_plot_list(ax[0, :], state_sequence, reference, "S{0}", color_map)
for i in range(len(state_sequence)):
overlap_list = pattern_tools.compute_overlap_list(state_sequence[i], pattern_list)
ax[1, i].bar(range(len(overlap_list)), overlap_list)
ax[1, i].set_title("m = {1}".format(i, round(overlap_list[reference_idx], 2)))
ax[1, i].set_ylim([-1, 1])
ax[1, i].get_xaxis().set_major_locator(plt.MaxNLocator(integer=True))
if i > 0: # show lables only for the first subplot
ax[1, i].set_xticklabels([])
ax[1, i].set_yticklabels([])
if suptitle is not None:
f.suptitle(suptitle)
plt.show()
示例4: plot_prediction
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_prediction(ax, inputs, mean, std, area=2):
order = np.argsort(inputs)
inputs, mean, std = inputs[order], mean[order], std[order]
ax.plot(inputs, mean, alpha=0.5)
ax.fill_between(
inputs, mean - area * std, mean + area * std, alpha=0.1, lw=0)
ax.yaxis.set_major_locator(plt.MaxNLocator(5, prune='both'))
ax.set_xlim(inputs.min(), inputs.max())
min_, max_ = inputs.min(), inputs.max()
min_ -= 0.1 * (max_ - min_ + 1e-6)
max_ += 0.1 * (max_ - min_ + 1e-6)
ax.set_xlim(min_, max_)
ax.yaxis.tick_right()
ax.yaxis.set_label_coords(-0.05, 0.5)
示例5: plot_std_area
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_std_area(ax, inputs, std, **kwargs):
kwargs['alpha'] = kwargs.get('alpha', 0.5)
kwargs['lw'] = kwargs.get('lw', 0.0)
order = np.argsort(inputs)
inputs, std = inputs[order], std[order]
ax.fill_between(inputs, std, 0 * std, **kwargs)
ax.set_xlim(inputs.min(), inputs.max())
ax.set_ylim(0, std.max())
ax.yaxis.set_major_locator(plt.MaxNLocator(4, prune='both'))
ax.yaxis.tick_right()
ax.yaxis.set_label_coords(-0.05, 0.5)
示例6: plot_results
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_results(args):
load_results = lambda x: tools.load_results(
os.path.join(args.logdir, x) + '-*/*.npz')
results = [
('BBB+NCP', load_results('bbb_ncp')),
('ODC+NCP', load_results('det_mix_ncp')),
('BBB', load_results('bbb')),
('Det', load_results('det')),
]
fig, ax = plt.subplots(ncols=4, figsize=(8, 2))
for a in ax:
a.xaxis.set_major_locator(plt.MaxNLocator(5))
a.yaxis.set_major_locator(plt.MaxNLocator(5))
tools.plot_distance(ax[0], results, 'train_distances', {})
ax[0].set_xlabel('Data points seen')
ax[0].set_title('Train RMSE')
ax[0].set_ylim(0.1, 0.5)
tools.plot_likelihood(ax[1], results, 'train_likelihoods', {})
ax[1].set_xlabel('Data points seen')
ax[1].set_title('Train NLPD')
ax[1].set_ylim(-0.8, 0.7)
tools.plot_distance(ax[2], results, 'test_distances', {})
ax[2].set_xlabel('Data points seen')
ax[2].set_title('Test RMSE')
ax[2].set_ylim(0.35, 0.55)
tools.plot_likelihood(ax[3], results, 'test_likelihoods', {})
ax[3].set_xlabel('Data points seen')
ax[3].set_title('Test NLPD')
ax[3].set_ylim(0.4, 1.3)
ax[3].legend(frameon=False, labelspacing=0.2, borderpad=0)
fig.tight_layout(pad=0, w_pad=0.5)
filename = os.path.join(args.logdir, 'results.pdf')
fig.savefig(filename)
示例7: plot_figures
# 需要導入模塊: from matplotlib import pyplot [as 別名]
# 或者: from matplotlib.pyplot import MaxNLocator [as 別名]
def plot_figures(self, prev_subplot_map=None):
subplot_map = {}
for idx, (environment, full_file_path) in enumerate(self.environments):
environment = environment.split('level')[1].split('-')[1].split('Deterministic')[0][1:]
if prev_subplot_map:
# skip on environments which were not plotted before
if environment not in prev_subplot_map.keys():
continue
subplot_idx = prev_subplot_map[environment]
else:
subplot_idx = idx + 1
print(environment)
axis = plt.subplot(self.rows, self.cols, subplot_idx)
subplot_map[environment] = subplot_idx
signals = SignalsFile(full_file_path)
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
steps = signals.bokeh_source.data[self.x_axis]
rewards = signals.bokeh_source.data[self.signal_to_plot]
yloc = plt.MaxNLocator(4)
axis.yaxis.set_major_locator(yloc)
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
plt.title(environment, fontsize=10, y=1.08)
plt.plot(steps, rewards, self.color, linewidth=0.8)
plt.subplots_adjust(hspace=2.0, wspace=0.4)
return subplot_map