本文整理匯總了Python中matplotlib.mlab.griddata方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.griddata方法的具體用法?Python mlab.griddata怎麽用?Python mlab.griddata使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.mlab
的用法示例。
在下文中一共展示了mlab.griddata方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: UpdateData
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def UpdateData(self, products, micapsfile):
self.UpdateExtents(products)
extents = products.picture.extents
xmax = extents.xmax
xmin = extents.xmin
ymax = extents.ymax
ymin = extents.ymin
path = products.map.clipborders[0].path
if path is not None:
self.AddPoints(self.x, self.y, self.z, path)
# self.CreateArray()
self.X = np.linspace(xmin, xmax, micapsfile.contour.grid[0])
self.Y = np.linspace(ymin, ymax, micapsfile.contour.grid[1])
# x = self.data['lon']
# y = self.data['lat']
# z = self.data['zvalue']
self.Z = griddata(self.x, self.y, self.z, self.X, self.Y, 'nn')
self.X, self.Y = np.meshgrid(self.X, self.Y)
self.min = min(self.z)
self.max = max(self.z)
self.distance = micapsfile.contour.step
self.min = math.floor(self.min / self.distance) * self.distance
self.max = math.ceil(self.max / self.distance) * self.distance
# 如果自定義了legend的最小、最大和步長值 則用自定義的值更新
self.UpdatePinLegendValue(micapsfile)
示例2: test_griddata_linear
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def test_griddata_linear():
# z is a linear function of x and y.
def get_z(x, y):
return 3.0*x - y
# Passing 1D xi and yi arrays to griddata.
x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5])
y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5])
z = get_z(x, y)
xi = [0.2, 0.4, 0.6, 0.8]
yi = [0.1, 0.3, 0.7, 0.9]
zi = mlab.griddata(x, y, z, xi, yi, interp='linear')
xi, yi = np.meshgrid(xi, yi)
np.testing.assert_array_almost_equal(zi, get_z(xi, yi))
# Passing 2D xi and yi arrays to griddata.
zi = mlab.griddata(x, y, z, xi, yi, interp='linear')
np.testing.assert_array_almost_equal(zi, get_z(xi, yi))
# Masking z array.
z_masked = np.ma.array(z, mask=[False, False, False, True, False])
correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, get_z(xi, yi))
zi = mlab.griddata(x, y, z_masked, xi, yi, interp='linear')
matest.assert_array_almost_equal(zi, correct_zi_masked)
np.testing.assert_array_equal(np.ma.getmask(zi),
np.ma.getmask(correct_zi_masked))
示例3: test_griddata_linear
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def test_griddata_linear():
# z is a linear function of x and y.
def get_z(x, y):
return 3.0*x - y
# Passing 1D xi and yi arrays to griddata.
x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5])
y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5])
z = get_z(x, y)
xi = [0.2, 0.4, 0.6, 0.8]
yi = [0.1, 0.3, 0.7, 0.9]
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='linear')
xi, yi = np.meshgrid(xi, yi)
np.testing.assert_array_almost_equal(zi, get_z(xi, yi))
# Passing 2D xi and yi arrays to griddata.
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='linear')
np.testing.assert_array_almost_equal(zi, get_z(xi, yi))
# Masking z array.
z_masked = np.ma.array(z, mask=[False, False, False, True, False])
correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, get_z(xi, yi))
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z_masked, xi, yi, interp='linear')
matest.assert_array_almost_equal(zi, correct_zi_masked)
np.testing.assert_array_equal(np.ma.getmask(zi),
np.ma.getmask(correct_zi_masked))
示例4: nearest_griddata
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def nearest_griddata(x, y, z, xi, yi):
"""
Nearest Neighbor Interpolation Method.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions.<br/>
Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around (neighboring) that point.<br/>
The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of neighboring points at all, yielding a piecewise-constant interpolant. <br/>
The algorithm is very simple to implement and is commonly used (usually along with mipmapping) in real-time 3D rendering to select color values for a textured surface.<br/>
zi = nearest_griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually) nonuniformly spaced vectors (x, y, z).<br/>
griddata() interpolates this surface at the points specified by (xi, yi) to produce zi. xi and yi must describe a regular grid.<br/>
Parameters
----------
x: array-like
x-coord [1D array]
y: array-like
y-coord [1D array]
z: array-like
z-coord [1D array]
xi: array-like
meshgrid for x-coords [2D array] see <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html">numpy.meshgrid</a>
yi: array-like
meshgrid for y-coords [2D array] see <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html">numpy.meshgrid</a>
Returns
-------
Interpolated Zi Coord
zi: array-like
zi interpolated-value [2D array] for (xi,yi)
"""
zi = griddata(zip(x,y), z, (xi, yi), method='nearest')
return zi
示例5: test_griddata_nn
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def test_griddata_nn():
# z is a linear function of x and y.
def get_z(x, y):
return 3.0*x - y
# Passing 1D xi and yi arrays to griddata.
x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5])
y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5])
z = get_z(x, y)
xi = [0.2, 0.4, 0.6, 0.8]
yi = [0.1, 0.3, 0.7, 0.9]
correct_zi = [[0.49999252, 1.0999978, 1.7000030, 2.3000080],
[0.29999208, 0.8999978, 1.5000029, 2.1000059],
[-0.1000099, 0.4999943, 1.0999964, 1.6999979],
[-0.3000128, 0.2999894, 0.8999913, 1.4999933]]
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi)
# Decreasing xi or yi should raise ValueError.
assert_raises(ValueError, mlab.griddata, x, y, z, xi[::-1], yi,
interp='nn')
assert_raises(ValueError, mlab.griddata, x, y, z, xi, yi[::-1],
interp='nn')
# Passing 2D xi and yi arrays to griddata.
xi, yi = np.meshgrid(xi, yi)
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi)
# Masking z array.
z_masked = np.ma.array(z, mask=[False, False, False, True, False])
correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, correct_zi)
zi = mlab.griddata(x, y, z_masked, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi_masked, 5)
np.testing.assert_array_equal(np.ma.getmask(zi),
np.ma.getmask(correct_zi_masked))
#*****************************************************************
# These Tests where taken from SCIPY with some minor modifications
# this can be retreived from:
# https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py
#*****************************************************************
示例6: test_griddata_nn
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def test_griddata_nn():
pytest.importorskip('mpl_toolkits.natgrid')
# z is a linear function of x and y.
def get_z(x, y):
return 3.0*x - y
# Passing 1D xi and yi arrays to griddata.
x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5])
y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5])
z = get_z(x, y)
xi = [0.2, 0.4, 0.6, 0.8]
yi = [0.1, 0.3, 0.7, 0.9]
correct_zi = [[0.49999252, 1.0999978, 1.7000030, 2.3000080],
[0.29999208, 0.8999978, 1.5000029, 2.1000059],
[-0.1000099, 0.4999943, 1.0999964, 1.6999979],
[-0.3000128, 0.2999894, 0.8999913, 1.4999933]]
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi, 5)
with pytest.warns(MatplotlibDeprecationWarning):
# Decreasing xi or yi should raise ValueError.
with pytest.raises(ValueError):
mlab.griddata(x, y, z, xi[::-1], yi, interp='nn')
with pytest.raises(ValueError):
mlab.griddata(x, y, z, xi, yi[::-1], interp='nn')
# Passing 2D xi and yi arrays to griddata.
xi, yi = np.meshgrid(xi, yi)
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi, 5)
# Masking z array.
z_masked = np.ma.array(z, mask=[False, False, False, True, False])
correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, correct_zi)
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z_masked, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi_masked, 5)
np.testing.assert_array_equal(np.ma.getmask(zi),
np.ma.getmask(correct_zi_masked))
#*****************************************************************
# These Tests where taken from SCIPY with some minor modifications
# this can be retrieved from:
# https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py
#*****************************************************************
示例7: natural_neighbor
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def natural_neighbor(x,y,z,xi,yi):
"""
Natural Neighbor Interpolation Method.
Natural neighbor interpolation is a method of spatial interpolation, developed by Robin Sibson.
The method is based on Voronoi tessellation of a discrete set of spatial points.
This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation,
in that it provides a more smooth approximation to the underlying "true" function.
see <a href="http://en.wikipedia.org/wiki/Radial_basis_function">Radial_basic_function
zi = natural_neighbor(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually) non uniformly spaced vectors (x, y, z).<br/>
griddata() interpolates this surface at the points specified by (xi, yi) to produce zi. xi and yi must describe a regular grid.
Parameters
----------
x: array-like, shape= 1D
x-coord [1D array]
y: array-like, shape= 1D
y-coord [1D array]
z: array-like, shape= 1D
z-coord [1D array]
xi: array-like, shape= 2D array
meshgrid for x-coords [2D array]
yi: array-like, shape= 2D array
meshgrid for y-coords [2D array]
Returns
-------
zi: array-like, shape=2D
zi interpolated-value [2D array] for (xi,yi)
"""
zi = mlab.griddata(x,y,z,xi,yi)
return zi
示例8: adam_plot
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def adam_plot(self, func, obs, hist):
hist['act'] = np.array(hist['act']).T
hist['f'] = np.array(hist['f']).T
hist['g'] = np.array(hist['g']).T
if self.dimA == 1:
xs = np.linspace(-1.+1e-8, 1.-1e-8, 100)
ys = [func(obs[[0],:], [[xi]])[0] for xi in xs]
fig = plt.figure()
plt.plot(xs, ys)
plt.plot(hist['act'][0,0,:], hist['f'][0,:], label='Adam')
plt.legend()
fname = os.path.join(FLAGS.outdir, 'adamPlt.png')
print("Saving Adam plot to {}".format(fname))
plt.savefig(fname)
plt.close(fig)
elif self.dimA == 2:
assert(False)
else:
xs = npr.uniform(-1., 1., (5000, self.dimA))
ys = np.array([func(obs[[0],:], [xi])[0] for xi in xs])
epi = np.hstack((xs, ys))
pca = PCA(n_components=2).fit(epi)
W = pca.components_[:,:-1]
xs_proj = xs.dot(W.T)
fig = plt.figure()
X = Y = np.linspace(xs_proj.min(), xs_proj.max(), 100)
Z = griddata(xs_proj[:,0], xs_proj[:,1], ys.ravel(),
X, Y, interp='linear')
plt.contourf(X, Y, Z, 15)
plt.colorbar()
adam_x = hist['act'][:,0,:].T
adam_x = adam_x.dot(W.T)
plt.plot(adam_x[:,0], adam_x[:,1], label='Adam', color='k')
plt.legend()
fname = os.path.join(FLAGS.outdir, 'adamPlt.png')
print("Saving Adam plot to {}".format(fname))
plt.savefig(fname)
plt.close(fig)
示例9: test_griddata_nn
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import griddata [as 別名]
def test_griddata_nn():
# z is a linear function of x and y.
def get_z(x, y):
return 3.0*x - y
# Passing 1D xi and yi arrays to griddata.
x = np.asarray([0.0, 1.0, 0.0, 1.0, 0.5])
y = np.asarray([0.0, 0.0, 1.0, 1.0, 0.5])
z = get_z(x, y)
xi = [0.2, 0.4, 0.6, 0.8]
yi = [0.1, 0.3, 0.7, 0.9]
correct_zi = [[0.49999252, 1.0999978, 1.7000030, 2.3000080],
[0.29999208, 0.8999978, 1.5000029, 2.1000059],
[-0.1000099, 0.4999943, 1.0999964, 1.6999979],
[-0.3000128, 0.2999894, 0.8999913, 1.4999933]]
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi, 5)
with pytest.warns(MatplotlibDeprecationWarning):
# Decreasing xi or yi should raise ValueError.
with pytest.raises(ValueError):
mlab.griddata(x, y, z, xi[::-1], yi, interp='nn')
with pytest.raises(ValueError):
mlab.griddata(x, y, z, xi, yi[::-1], interp='nn')
# Passing 2D xi and yi arrays to griddata.
xi, yi = np.meshgrid(xi, yi)
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi, 5)
# Masking z array.
z_masked = np.ma.array(z, mask=[False, False, False, True, False])
correct_zi_masked = np.ma.masked_where(xi + yi > 1.0, correct_zi)
with pytest.warns(MatplotlibDeprecationWarning):
zi = mlab.griddata(x, y, z_masked, xi, yi, interp='nn')
np.testing.assert_array_almost_equal(zi, correct_zi_masked, 5)
np.testing.assert_array_equal(np.ma.getmask(zi),
np.ma.getmask(correct_zi_masked))
#*****************************************************************
# These Tests where taken from SCIPY with some minor modifications
# this can be retrieved from:
# https://github.com/scipy/scipy/blob/master/scipy/stats/tests/test_kdeoth.py
#*****************************************************************