本文整理匯總了Python中matplotlib.mlab.bivariate_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python mlab.bivariate_normal方法的具體用法?Python mlab.bivariate_normal怎麽用?Python mlab.bivariate_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.mlab
的用法示例。
在下文中一共展示了mlab.bivariate_normal方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_contour_xyz
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def test_contour_xyz(self):
_skip_if_no_matplotlib()
import numpy as np
import matplotlib.mlab as mlab
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
viewer = cesiumpy.Viewer()
viewer.plot.contour(X, Y, Z)
self.assertEqual(len(viewer.entities), 7)
self.assertTrue(all(isinstance(x, cesiumpy.Polyline)
for x in viewer.entities))
self.assertEqual(viewer.entities[0].material,
cesiumpy.color.Color(0.0, 0.0, 0.5, 1.0))
示例2: get_test_data
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def get_test_data(delta=0.05):
'''
Return a tuple X, Y, Z with a test data set.
'''
from matplotlib.mlab import bivariate_normal
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2 - Z1
X = X * 10
Y = Y * 10
Z = Z * 500
return X, Y, Z
########################################################
# Register Axes3D as a 'projection' object available
# for use just like any other axes
########################################################
示例3: test_labels
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def test_labels():
# Adapted from pylab_examples example code: contour_demo.py
# see issues #2475, #2843, and #2818 for explanation
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
fig, ax = plt.subplots(1, 1)
CS = ax.contour(X, Y, Z)
disp_units = [(216, 177), (359, 290), (521, 406)]
data_units = [(-2, .5), (0, -1.5), (2.8, 1)]
CS.clabel()
for x, y in data_units:
CS.add_label_near(x, y, inline=True, transform=None)
for x, y in disp_units:
CS.add_label_near(x, y, inline=True, transform=False)
示例4: gauss_params_plot
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def gauss_params_plot(strokes, title ='Distribution of Gaussian Mixture parameters', figsize = (20,2)):
plt.figure(figsize=figsize)
import matplotlib.mlab as mlab
buff = 1 ; epsilon = 1e-4
minx, maxx = np.min(strokes[:,0])-buff, np.max(strokes[:,0])+buff
miny, maxy = np.min(strokes[:,1])-buff, np.max(strokes[:,1])+buff
delta = abs(maxx-minx)/400. ;
x = np.arange(minx, maxx, delta)
y = np.arange(miny, maxy, delta)
X, Y = np.meshgrid(x, y)
Z = np.zeros_like(X)
for i in range(strokes.shape[0]):
gauss = mlab.bivariate_normal(X, Y, mux=strokes[i,0], muy=strokes[i,1], \
sigmax=strokes[i,2], sigmay=strokes[i,3], sigmaxy=0) # sigmaxy=strokes[i,4] gives error
Z += gauss * np.power(strokes[i,3] + strokes[i,2], .4) / (np.max(gauss) + epsilon)
plt.title(title, fontsize=20)
plt.imshow(np.flipud(Z), cmap=cm.gnuplot)
示例5: calcAtomGaussians
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def calcAtomGaussians(mol, a=0.03, step=0.02, weights=None):
"""
useful things to do with these:
fig.axes[0].imshow(z,cmap=cm.gray,interpolation='bilinear',origin='lower',extent=(0,1,0,1))
fig.axes[0].contour(x,y,z,20,colors='k')
fig=Draw.MolToMPL(m);
contribs=Crippen.rdMolDescriptors._CalcCrippenContribs(m)
logps,mrs=zip(*contribs)
x,y,z=Draw.calcAtomGaussians(m,0.03,step=0.01,weights=logps)
fig.axes[0].imshow(z,cmap=cm.jet,interpolation='bilinear',origin='lower',extent=(0,1,0,1))
fig.axes[0].contour(x,y,z,20,colors='k',alpha=0.5)
fig.savefig('coumlogps.colored.png',bbox_inches='tight')
"""
import numpy
from matplotlib import mlab
x = numpy.arange(0, 1, step)
y = numpy.arange(0, 1, step)
X, Y = numpy.meshgrid(x, y)
if weights is None:
weights = [1.] * mol.GetNumAtoms()
Z = mlab.bivariate_normal(X, Y, a, a, mol._atomPs[0][0], mol._atomPs[0][1]) * weights[0]
for i in range(1, mol.GetNumAtoms()):
Zp = mlab.bivariate_normal(X, Y, a, a, mol._atomPs[i][0], mol._atomPs[i][1])
Z += Zp * weights[i]
return X, Y, Z
示例6: image_demo
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def image_demo(fig, ax):
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
xx, yy = np.meshgrid(x, y)
z1 = mlab.bivariate_normal(xx, yy, 1.0, 1.0, 0.0, 0.0)
z2 = mlab.bivariate_normal(xx, yy, 1.5, 0.5, 1, 1)
image = z2-z1 # Difference of Gaussians
img_plot = ax.imshow(image)
ax.set_title('image')
fig.tight_layout()
# `colorbar` should be called after `tight_layout`.
fig.colorbar(img_plot, ax=ax)
示例7: gen_gaussian_plot_vals
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def gen_gaussian_plot_vals(μ, C):
"Z values for plotting the bivariate Gaussian N(μ, C)"
m_x, m_y = float(μ[0]), float(μ[1])
s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1])
s_xy = C[0, 1]
return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)
示例8: main
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def main():
# Part of the example at
# http://matplotlib.sourceforge.net/plot_directive/mpl_examples/pylab_examples/contour_demo.py
delta = 0.025
x = numpy.arange(-3.0, 3.0, delta)
y = numpy.arange(-2.0, 2.0, delta)
X, Y = numpy.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = 10.0 * (Z2 - Z1)
pyplot.figure()
CS = pyplot.contour(X, Y, Z)
pyplot.show()
示例9: plot_contours
# 需要導入模塊: from matplotlib import mlab [as 別名]
# 或者: from matplotlib.mlab import bivariate_normal [as 別名]
def plot_contours(data, means, covs, title):
plt.figure()
plt.plot([x[0] for x in data], [y[1] for y in data],'ko') # data
delta = 0.025
k = len(means)
x = np.arange(-2.0, 7.0, delta)
y = np.arange(-2.0, 7.0, delta)
X, Y = np.meshgrid(x, y)
col = ['green', 'red', 'indigo']
for i in range(k):
mean = means[i]
cov = covs[i]
sigmax = np.sqrt(cov[0][0])
sigmay = np.sqrt(cov[1][1])
sigmaxy = cov[0][1]/(sigmax*sigmay)
Z = mlab.bivariate_normal(X, Y, sigmax, sigmay, mean[0], mean[1], sigmaxy)
plt.contour(X, Y, Z, colors = col[i])
plt.title(title)
plt.rcParams.update({'font.size':16})
plt.tight_layout()
# In[26]:
# Parameters after initialization