本文整理匯總了Python中matplotlib.image.imread方法的典型用法代碼示例。如果您正苦於以下問題:Python image.imread方法的具體用法?Python image.imread怎麽用?Python image.imread使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.image
的用法示例。
在下文中一共展示了image.imread方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: undistort_images
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def undistort_images(src, dst):
"""
undistort the images in src folder to dst folder
"""
# load dst, mtx
pickle_file = open("../camera_cal/camera_cal.p", "rb")
dist_pickle = pickle.load(pickle_file)
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
pickle_file.close()
# loop the image folder
image_files = glob.glob(src+"*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
image_dist = cv2.undistort(img, mtx, dist, None, mtx)
file_name = file.split("\\")[-1]
print(file_name)
out_image = dst+file_name
print(out_image)
image_dist = cv2.cvtColor(image_dist, cv2.COLOR_RGB2BGR)
cv2.imwrite(out_image, image_dist)
示例2: wrap_images
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def wrap_images(src, dst):
"""
apply the wrap to images
"""
# load M, Minv
img_size = (1280, 720)
pickle_file = open("../helper/trans_pickle.p", "rb")
trans_pickle = pickle.load(pickle_file)
M = trans_pickle["M"]
Minv = trans_pickle["Minv"]
# loop the file folder
image_files = glob.glob(src+"*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
image_wraped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
file_name = file.split("\\")[-1]
print(file_name)
out_image = dst+file_name
print(out_image)
# no need to covert RGB to BGR since 3 channel is same
image_wraped = cv2.cvtColor(image_wraped, cv2.COLOR_RGB2BGR)
cv2.imwrite(out_image, image_wraped)
示例3: test_color_grid_thresh_dynamic
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def test_color_grid_thresh_dynamic(src, dst, s_thresh, sx_thresh):
"""
apply the thresh to images in a src folder and output to dst foler
"""
image_files = glob.glob(src+"*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
image_threshed = color_grid_thresh_dynamic(img, s_thresh=s_thresh, sx_thresh=sx_thresh)
file_name = file.split("\\")[-1]
print(file_name)
out_image = dst+file_name
print(out_image)
# convert binary to RGB, *255, to visiual, 1 will not visual after write to file
image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB)
cv2.imwrite(out_image, image_threshed)
示例4: test_yellow_grid_thresh_images
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def test_yellow_grid_thresh_images(src, dst, y_low=(10,50,0), y_high=(30,255,255), sx_thresh=(20, 100)):
"""
apply the thresh to images in a src folder and output to dst foler
"""
image_files = glob.glob(src+"*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
image_threshed = yellow_grid_thresh(img, y_low, y_high, sx_thresh)
file_name = file.split("\\")[-1]
print(file_name)
out_image = dst+file_name
print(out_image)
# convert binary to RGB, *255, to visiual, 1 will not visual after write to file
image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB)
cv2.imwrite(out_image, image_threshed)
示例5: test_yellow_white_thresh_images
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def test_yellow_white_thresh_images(src, dst, y_low=(10,50,0), y_high=(30,255,255), w_low=(180,180,180), w_high=(255,255,255)):
"""
apply the thresh to images in a src folder and output to dst foler
"""
image_files = glob.glob(src+"*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
image_threshed = yellow_white_thresh(img, y_low, y_high, w_low, w_high)
file_name = file.split("\\")[-1]
print(file_name)
out_image = dst+file_name
print(out_image)
# convert binary to RGB, *255, to visiual, 1 will not visual after write to file
image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB)
# HSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
# V = HSV[:,:,2]
# brightness = np.mean(V)
# info_str = "brightness is: {}".format(int(brightness))
# cv2.putText(image_threshed, info_str, (50,700), cv2.FONT_HERSHEY_SIMPLEX,2,(0,255,255),2)
cv2.imwrite(out_image, image_threshed)
示例6: test
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def test():
pickle_file = open("trans_pickle.p", "rb")
trans_pickle = pickle.load(pickle_file)
M = trans_pickle["M"]
Minv = trans_pickle["Minv"]
img_size = (1280, 720)
image_files = glob.glob("../output_images/undistort/*.jpg")
for idx, file in enumerate(image_files):
print(file)
img = mpimg.imread(file)
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
file_name = file.split("\\")[-1]
print(file_name)
out_image = "../output_images/perspect_trans/"+file_name
print(out_image)
# convert to opencv BGR format
warped = cv2.cvtColor(warped, cv2.COLOR_RGB2BGR)
cv2.imwrite(out_image, warped)
示例7: __init__
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def __init__(self, savename, imagename):
self.path=os.path.dirname(procedural_city_generation.__file__)
try:
with open(self.path+"/temp/"+savename+ "_heightmap.txt", 'r') as f:
self.border=[eval(x) for x in f.read().split("_")[-2:] if x is not '']
except IOError:
print("Run the previous steps in procedural_city_generation first! If this message persists, run the \"clean\" command")
return
if imagename == "diffused":
print("Using diffused version of population density image")
with open(self.path+"/temp/"+savename+ "_densitymap.txt", 'r') as f:
densityname=f.read()
print("Population density image is being set up")
self.img=self.setupimage(self.path+"/temp/"+densityname)
print("Population density image setup is finished")
return
else:
print("Looking for image in procedural_city_generation/inputs/buildingheight_pictures")
import matplotlib.image as mpimg
self.img=mpimg.imread(self.path +"/inputs/buildingheight_pictures/" + imagename)
print("Image found")
示例8: main
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def main():
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import sys, os
sys.path.append("../../..")
import procedural_city_generation
from procedural_city_generation.roadmap.config_functions.Watertools import Watertools
import Image
import numpy as np
img=np.dot(mpimg.imread(os.getcwd() + "/resources/manybodies.png")[..., :3], [0.299, 0.587, 0.144])
w=Watertools(img)
plt.imshow(img, cmap="gray")
plt.show()
f=w.flood(0.95, np.array([80, 2]))
plt.imshow(f, cmap="gray")
plt.show()
示例9: get
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def get(self, idx, path=None):
x = None
for i in self.fs.find({'filename': idx}):
x = i.read()
fmt = i.fmt
if x is None:
raise ValueError(f'There is no id in db: {idx}')
with open((path or '') + idx + '.' + fmt, 'wb') as f:
f.write(x)
print(f'Your file saved at {(path or "") + idx + "." + fmt}')
if fmt == 'png':
img = mpimg.imread((path or '') + idx + '.' + fmt)
plt.figure(figsize=[15, 8])
plt.imshow(img)
plt.show()
plt.close()
elif fmt == 'html':
html = x.decode()
width = int(html.split('var width = ')[1].split(',')[0])
height = int(html.split('height = ')[1].split(';')[0])
display(IFrame((path or '') + idx + '.' + fmt, width=width + 200, height=height + 200))
elif fmt == 'json':
with open((path or '') + idx + '.' + fmt) as f:
x = json.load(f)
return x
示例10: test_imsave_color_alpha
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def test_imsave_color_alpha():
# Test that imsave accept arrays with ndim=3 where the third dimension is
# color and alpha without raising any exceptions, and that the data is
# acceptably preserved through a save/read roundtrip.
from numpy import random
random.seed(1)
data = random.rand(256, 128, 4)
buff = io.BytesIO()
plt.imsave(buff, data)
buff.seek(0)
arr_buf = plt.imread(buff)
# Recreate the float -> uint8 -> float32 conversion of the data
data = (255*data).astype('uint8').astype('float32')/255
# Wherever alpha values were rounded down to 0, the rgb values all get set
# to 0 during imsave (this is reasonable behaviour).
# Recreate that here:
for j in range(3):
data[data[:, :, 3] == 0, j] = 1
assert_array_equal(data, arr_buf)
示例11: visualize
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def visualize(img_id):
img_descriptor = coco.loadImgs(img_id)
file_name = coco_data_folder + "val/" + img_descriptor[0]['file_name']
fig, ax = plt.subplots(1)
img = mpimg.imread(file_name)
ax.imshow(img)
gt_ann_ids = coco.getAnnIds(imgIds=[img_id])
gt_anns = coco.loadAnns(gt_ann_ids)
dets = detections_by_imgid[img_id]
print("Image", img_id, "Dets", len(dets), "GT", len(gt_anns))
for gt in gt_anns:
draw_box(ax, gt['bbox'], 'r', gt['category_id'], 1.0)
for det in dets:
draw_box(ax, det['bbox'], 'b', det['category_id'], det['score'])
plt.show()
示例12: graphviz_plot
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def graphviz_plot(graph, fname="tmp_dotgraph.dot", show=True):
if os.path.exists(fname):
print("WARNING: Overwriting existing file {} for new plots".format(fname))
f = open(fname,'w')
f.writelines('digraph G {\nnode [width=.3,height=.3,shape=octagon,style=filled,color=skyblue];\noverlap="false";\nrankdir="LR";\n')
for i in graph:
for j in graph[i]:
s= ' '+ i
s += ' -> ' + j + ' [label="' + str(graph[i][j]) + '"]'
s+=';\n'
f.writelines(s)
f.writelines('}')
f.close()
graphname = fname.split(".")[0] + ".png"
pe(["dot", "-Tpng", fname, "-o", graphname])
if show:
plt.imshow(mpimg.imread(graphname))
plt.show()
示例13: create_thumbnail
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def create_thumbnail(infile, thumbfile,
width=300, height=300,
cx=0.5, cy=0.5, border=4):
baseout, extout = op.splitext(thumbfile)
im = image.imread(infile)
rows, cols = im.shape[:2]
x0 = int(cx * cols - .5 * width)
y0 = int(cy * rows - .5 * height)
xslice = slice(x0, x0 + width)
yslice = slice(y0, y0 + height)
thumb = im[yslice, xslice]
thumb[:border, :, :3] = thumb[-border:, :, :3] = 0
thumb[:, :border, :3] = thumb[:, -border:, :3] = 0
dpi = 100
fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi)
ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
frameon=False, xticks=[], yticks=[])
ax.imshow(thumb, aspect='auto', resample=True,
interpolation='bilinear')
fig.savefig(thumbfile, dpi=dpi)
return fig
示例14: __init__
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def __init__(self, fileName = None, label = None, Mat = None):
if fileName != None:
self.imgName = fileName
self.img = image.imread(fileName)
if len(self.img.shape) == 3:
self.img = self.img[:,:, 1]
else:
assert Mat != None
self.img = Mat
self.label = label
#self.stdImg = Image._normalization(self.img)
#self.iimg = Image._integrateImg(self.stdImg)
#self.vecImg = self.iimg.transpose().flatten()
self.vecImg = Image._integrateImg( Image._normalization(self.img) ).transpose().flatten()
示例15: compute_statistics
# 需要導入模塊: from matplotlib import image [as 別名]
# 或者: from matplotlib.image import imread [as 別名]
def compute_statistics(self, files):
"""Use welford's method to compute mean and variance of the given
dataset.
See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm."""
assert len(files) > 1
n = 0
mean = np.zeros(3)
M2 = np.zeros(3)
for j, filename in enumerate(files):
#TODO ensure the pixel values are 0..255
im = np.reshape(mpimg.imread(filename) * 255, [-1, 3])
for i in range(np.shape(im)[1]):
n = n + 1
delta = im[i] - mean
mean += delta / n
M2 += delta * (im[i] - mean)
sys.stdout.write('\r>> Processed %.1f%%' % (
float(j) / float(len(files)) * 100.0))
sys.stdout.flush()
var = M2 / (n - 1)
stddev = np.sqrt(var)
return np.float32(mean), np.float32(stddev)