本文整理匯總了Python中matplotlib.gridspec.GridSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python gridspec.GridSpec方法的具體用法?Python gridspec.GridSpec怎麽用?Python gridspec.GridSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.gridspec
的用法示例。
在下文中一共展示了gridspec.GridSpec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot(samples, size, name):
size = int(size)
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(size, size), cmap='Greys_r')
plt.savefig('out/{}.png'.format(name), bbox_inches='tight')
plt.close(fig)
示例2: visualization_init
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def visualization_init(self):
fig = plt.figure(figsize=(12, 6), frameon=False, tight_layout=True)
fig.canvas.set_window_title(self.servoing_pol.predictor.name)
gs = gridspec.GridSpec(1, 2)
plt.show(block=False)
return_plotter = LossPlotter(fig, gs[0],
format_dicts=[dict(linewidth=2)] * 2,
labels=['mean returns / 10', 'mean discounted returns'],
ylabel='returns')
return_major_locator = MultipleLocator(1)
return_major_formatter = FormatStrFormatter('%d')
return_minor_locator = MultipleLocator(1)
return_plotter._ax.xaxis.set_major_locator(return_major_locator)
return_plotter._ax.xaxis.set_major_formatter(return_major_formatter)
return_plotter._ax.xaxis.set_minor_locator(return_minor_locator)
learning_plotter = LossPlotter(fig, gs[1], format_dicts=[dict(linewidth=2)] * 2, ylabel='mean evaluation values')
return fig, return_plotter, learning_plotter
示例3: make_grid_spec
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def make_grid_spec(
ax_or_figsize: Union[Tuple[int, int], _AxesSubplot],
nrows: int,
ncols: int,
wspace: Optional[float] = None,
hspace: Optional[float] = None,
width_ratios: Optional[Sequence[float]] = None,
height_ratios: Optional[Sequence[float]] = None,
) -> Tuple[Figure, gridspec.GridSpecBase]:
kw = dict(
wspace=wspace,
hspace=hspace,
width_ratios=width_ratios,
height_ratios=height_ratios,
)
if isinstance(ax_or_figsize, tuple):
fig = pl.figure(figsize=ax_or_figsize)
return fig, gridspec.GridSpec(nrows, ncols, **kw)
else:
ax = ax_or_figsize
ax.axis('off')
ax.set_frame_on(False)
ax.set_xticks([])
ax.set_yticks([])
return ax.figure, ax.get_subplotspec().subgridspec(nrows, ncols, **kw)
示例4: _panel_grid
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _panel_grid(hspace, wspace, ncols, num_panels):
from matplotlib import gridspec
n_panels_x = min(ncols, num_panels)
n_panels_y = np.ceil(num_panels / n_panels_x).astype(int)
# each panel will have the size of rcParams['figure.figsize']
fig = pl.figure(
figsize=(
n_panels_x * rcParams['figure.figsize'][0] * (1 + wspace),
n_panels_y * rcParams['figure.figsize'][1],
),
)
left = 0.2 / n_panels_x
bottom = 0.13 / n_panels_y
gs = gridspec.GridSpec(
nrows=n_panels_y,
ncols=n_panels_x,
left=left,
right=1 - (n_panels_x - 1) * left - 0.01 / n_panels_x,
bottom=bottom,
top=1 - (n_panels_y - 1) * bottom - 0.1 / n_panels_y,
hspace=hspace,
wspace=wspace,
)
return fig, gs
示例5: plot_raster_cmp
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot_raster_cmp(spike_trains, population=None, time_window=None, node_ids=None, ts_units=None, show_plot=True,
save_as=None, with_labels=False):
spike_trains_l = _get_spike_trains(spike_trains)
time_window = time_window or _find_time_window(spike_trains_l, population)
labels = _build_labels_lu(with_labels, spike_trains)
gs = gridspec.GridSpec(1, 1)
for i, spikes in enumerate(spike_trains_l):
spikes_df = spikes.to_dataframe(populations=population, time_window=time_window, node_ids=node_ids)
ax1 = plt.subplot(gs[0])
ax1.scatter(spikes_df['timestamps'], spikes_df['node_ids'], lw=0, s=5, label=labels[i])
ax1.legend(loc=1, prop={'size': 10})
ax1.set_xlim([time_window[0], time_window[1]])
if save_as is not None:
plt.savefig(save_as)
if show_plot:
plt.show()
示例6: get_gridspec
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def get_gridspec(self, figure, nmr_plots):
rows = self.rows
cols = self.cols
if rows is None and cols is None:
return AutoGridLayout(spacings=self.spacings).get_gridspec(figure, nmr_plots)
if rows is None:
rows = int(np.ceil(nmr_plots / cols))
if cols is None:
cols = int(np.ceil(nmr_plots / rows))
if rows * cols < nmr_plots:
cols = int(np.ceil(nmr_plots / rows))
return GridLayoutSpecifier(GridSpec(rows, cols, **self.spacings), figure)
示例7: show_images
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def show_images(images, rgb=True):
gs = gridspec.GridSpec(1, len(images))
for i, image in enumerate(images):
plt.subplot(gs[0, i])
if rgb:
plt.imshow(image)
else:
image = image.reshape(image.shape[0], image.shape[1])
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.show()
示例8: _hrv_plot
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _hrv_plot(peaks, out, sampling_rate=1000):
fig = plt.figure(constrained_layout=False)
spec = gs.GridSpec(ncols=2, nrows=2, height_ratios=[1, 1], width_ratios=[1, 1])
# Arrange grids
ax_distrib = fig.add_subplot(spec[0, :-1])
ax_distrib.set_xlabel("R-R intervals (ms)")
ax_distrib.set_title("Distribution of R-R intervals")
ax_psd = fig.add_subplot(spec[1, :-1])
spec_within = gs.GridSpecFromSubplotSpec(4, 4, subplot_spec=spec[:, -1], wspace=0.025, hspace=0.05)
ax_poincare = fig.add_subplot(spec_within[1:4, 0:3])
ax_marg_x = fig.add_subplot(spec_within[0, 0:3])
ax_marg_x.set_title("Poincaré Plot")
ax_marg_y = fig.add_subplot(spec_within[1:4, 3])
# Distribution of RR intervals
peaks = _hrv_sanitize_input(peaks)
rri = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=False)
ax_distrib = summary_plot(rri, ax=ax_distrib)
# Poincare plot
out.columns = [col.replace("HRV_", "") for col in out.columns]
_hrv_nonlinear_show(rri, out, ax=ax_poincare, ax_marg_x=ax_marg_x, ax_marg_y=ax_marg_y)
# PSD plot
rri, sampling_rate = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=True)
frequency_bands = out[["ULF", "VLF", "LF", "HF", "VHF"]]
_hrv_frequency_show(rri, frequency_bands, sampling_rate=sampling_rate, ax=ax_psd)
示例9: _generate_4_axes_via_gridspec
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _generate_4_axes_via_gridspec():
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.gridspec # noqa
gs = mpl.gridspec.GridSpec(2, 2)
ax_tl = plt.subplot(gs[0, 0])
ax_ll = plt.subplot(gs[1, 0])
ax_tr = plt.subplot(gs[0, 1])
ax_lr = plt.subplot(gs[1, 1])
return gs, [ax_tl, ax_ll, ax_tr, ax_lr]
示例10: imgPixInColorSpace
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def imgPixInColorSpace(pixData):
fig = plt.figure()
gs = gridspec.GridSpec(1, 3)
im = fig.add_subplot(gs[0,0])
im.imshow(pixData)
im.set_title("2D Image")
ax = fig.add_subplot(gs[0,1:3], projection='3d')
colors = np.reshape(pixData, (pixData.shape[0] * pixData.shape[1], pixData.shape[2]))
colors = colors / 255.0
ax.scatter(pixData[:,:,0], pixData[:,:,1], pixData[:,:,2], c=colors)
ax.set_xlabel("Red", color='red')
ax.set_ylabel("Green", color='green')
ax.set_zlabel("Blue", color='blue')
ax.set_title("Image in Color Space")
ax.set_xlim(0, 255)
ax.set_ylim(0, 255)
ax.set_zlim(0, 255)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.zaxis.set_ticks([])
plt.show()
示例11: imgPalette
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def imgPalette(imgs, themes, titles):
N = len(imgs)
fig = plt.figure()
gs = gridspec.GridSpec(len(imgs), len(themes)+1)
print(N)
for i in range(N):
im = fig.add_subplot(gs[i, 0])
im.imshow(imgs[i])
im.set_title("Image %s" % str(i+1))
im.xaxis.set_ticks([])
im.yaxis.set_ticks([])
t = 1
for themeLst in themes:
theme = themeLst[i]
pale = np.zeros(imgs[i].shape, dtype=np.uint8)
h, w, _ = pale.shape
ph = h / len(theme)
for y in range(h):
pale[y,:,:] = np.array(theme[int(y / ph)], dtype=np.uint8)
pl = fig.add_subplot(gs[i, t])
pl.imshow(pale)
pl.set_title(titles[t-1])
pl.xaxis.set_ticks([])
pl.yaxis.set_ticks([])
t += 1
plt.show()
示例12: __init__
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def __init__(self,
name,
figsize=(8, 10),
max_outputs=3,
subplot_grid_shape=None,
gridspec_kwargs=None,
plot_func=AddImage,
shared_subplot_kwargs=None):
"""Creates a new MatplotlibFigureSummary object.
Args:
name: A string name for the generated summary.
figsize: A 2D tuple containing the overall figure (width, height)
dimensions in inches.
max_outputs: The maximum number of images to generate.
subplot_grid_shape: A 2D tuple containing the height and width dimensions
of the subplot grid. height * width must be >= the number of subplots.
Defaults to (num_subplots, 1), i.e. a vertical stack of plots.
gridspec_kwargs: A dict of extra keyword args to use when initializing the
figure's gridspec, as supported by matplotlib.gridspec.GridSpec.
plot_func: A function shared across all subplots used to populate a single
subplot. See the docstring for AddSubplot for details.
shared_subplot_kwargs: A dict of extra keyword args to pass to the plot
function for all subplots. This is useful for specifying properties
such as 'clim' which should be consistent across all subplots.
"""
self._name = name
self._figsize = figsize
self._max_outputs = max_outputs
self._subplot_grid_shape = subplot_grid_shape
self._gridspec_kwargs = gridspec_kwargs if gridspec_kwargs else {}
self._plot_func = plot_func
self._shared_subplot_kwargs = (
shared_subplot_kwargs if shared_subplot_kwargs else {})
self._subplots = []
示例13: Finalize
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def Finalize(self):
"""Finishes creation of the overall figure, returning the image summary."""
subplot_grid_shape = self._subplot_grid_shape
if subplot_grid_shape is None:
subplot_grid_shape = (len(self._subplots), 1)
# AddMatplotlibFigureSummary (due to restrictions of py_func) only supports
# flattened list of tensors so we must do some bookkeeping to maintain a
# mapping from _SubplotMetadata object to flattened_tensors.
subplot_slices = []
flattened_tensors = []
for subplot in self._subplots:
start = len(flattened_tensors)
subplot_slices.append((start, start + len(subplot.tensor_list)))
flattened_tensors.extend(subplot.tensor_list)
def PlotFunc(fig, *numpy_data_list):
gs = gridspec.GridSpec(*subplot_grid_shape, **self._gridspec_kwargs)
for n, subplot in enumerate(self._subplots):
axes = fig.add_subplot(gs[n])
start, end = subplot_slices[n]
subplot_data = numpy_data_list[start:end]
subplot.plot_func(fig, axes, *subplot_data)
func = functools.partial(_RenderMatplotlibFigures, self._figsize,
self._max_outputs, PlotFunc)
batch_sizes = [tf.shape(t)[0] for t in flattened_tensors]
num_tensors = len(flattened_tensors)
with tf.control_dependencies([
tf.assert_equal(
batch_sizes, [batch_sizes[0]] * num_tensors, summarize=num_tensors)
]):
rendered = tf.py_func(
func, flattened_tensors, tf.uint8, name='RenderMatplotlibFigures')
return tf.summary.image(self._name, rendered, max_outputs=self._max_outputs)
示例14: plot2d
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot2d(u, learned_u, t):
fig, ax = plt.subplots(nrows=1, ncols=1)
ax.axis('off')
gs0 = gridspec.GridSpec(3, 1)
gs0.update(top=0.95, bottom=0.15, left=0.1, right=0.95, hspace=0.5)
ax = plt.subplot(gs0[0:1, 0:1])
ax.plot(t,u[:,0],'r-')
ax.plot(t,learned_u[:,0],'k--')
ax.set_xlabel('$t$')
ax.set_ylabel('$x$')
ax = plt.subplot(gs0[1:2, 0:1])
ax.plot(t,u[:,1],'r-')
ax.plot(t,learned_u[:,1],'k--')
ax.set_xlabel('$t$')
ax.set_ylabel('$y$')
ax = plt.subplot(gs0[2:3, 0:1])
ax.plot(t,u[:,2],'r-',label='Exact Dynamics')
ax.plot(t,learned_u[:,2],'k--',label='Learned Dynamics')
ax.set_xlabel('$t$')
ax.set_ylabel('$z$')
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.4), ncol=2, frameon=False)
plt.show()
示例15: _justified
# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _justified(self, nrows, grid_arrangement):
ax_specs = []
num_small_cols = np.lcm.reduce(grid_arrangement)
gs = gridspec.GridSpec(
nrows, num_small_cols, figure=plt.figure(constrained_layout=True)
)
for r, row_cols in enumerate(grid_arrangement):
skip = num_small_cols // row_cols
for col in range(row_cols):
s = col * skip
e = s + skip
ax_specs.append(gs[r, s:e])
return ax_specs