當前位置: 首頁>>代碼示例>>Python>>正文


Python gridspec.GridSpec方法代碼示例

本文整理匯總了Python中matplotlib.gridspec.GridSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python gridspec.GridSpec方法的具體用法?Python gridspec.GridSpec怎麽用?Python gridspec.GridSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.gridspec的用法示例。


在下文中一共展示了gridspec.GridSpec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot(samples, size, name):
    size = int(size)
    fig = plt.figure(figsize=(4, 4))
    gs = gridspec.GridSpec(4, 4)
    gs.update(wspace=0.05, hspace=0.05)

    for i, sample in enumerate(samples):
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(size, size), cmap='Greys_r')

    plt.savefig('out/{}.png'.format(name), bbox_inches='tight')
    plt.close(fig) 
開發者ID:wiseodd,項目名稱:generative-models,代碼行數:18,代碼來源:rbm_binary_pcd.py

示例2: visualization_init

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def visualization_init(self):
        fig = plt.figure(figsize=(12, 6), frameon=False, tight_layout=True)
        fig.canvas.set_window_title(self.servoing_pol.predictor.name)
        gs = gridspec.GridSpec(1, 2)
        plt.show(block=False)

        return_plotter = LossPlotter(fig, gs[0],
                                     format_dicts=[dict(linewidth=2)] * 2,
                                     labels=['mean returns / 10', 'mean discounted returns'],
                                     ylabel='returns')
        return_major_locator = MultipleLocator(1)
        return_major_formatter = FormatStrFormatter('%d')
        return_minor_locator = MultipleLocator(1)
        return_plotter._ax.xaxis.set_major_locator(return_major_locator)
        return_plotter._ax.xaxis.set_major_formatter(return_major_formatter)
        return_plotter._ax.xaxis.set_minor_locator(return_minor_locator)

        learning_plotter = LossPlotter(fig, gs[1], format_dicts=[dict(linewidth=2)] * 2, ylabel='mean evaluation values')
        return fig, return_plotter, learning_plotter 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:21,代碼來源:cem.py

示例3: make_grid_spec

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def make_grid_spec(
    ax_or_figsize: Union[Tuple[int, int], _AxesSubplot],
    nrows: int,
    ncols: int,
    wspace: Optional[float] = None,
    hspace: Optional[float] = None,
    width_ratios: Optional[Sequence[float]] = None,
    height_ratios: Optional[Sequence[float]] = None,
) -> Tuple[Figure, gridspec.GridSpecBase]:
    kw = dict(
        wspace=wspace,
        hspace=hspace,
        width_ratios=width_ratios,
        height_ratios=height_ratios,
    )
    if isinstance(ax_or_figsize, tuple):
        fig = pl.figure(figsize=ax_or_figsize)
        return fig, gridspec.GridSpec(nrows, ncols, **kw)
    else:
        ax = ax_or_figsize
        ax.axis('off')
        ax.set_frame_on(False)
        ax.set_xticks([])
        ax.set_yticks([])
        return ax.figure, ax.get_subplotspec().subgridspec(nrows, ncols, **kw) 
開發者ID:theislab,項目名稱:scanpy,代碼行數:27,代碼來源:_utils.py

示例4: _panel_grid

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _panel_grid(hspace, wspace, ncols, num_panels):
    from matplotlib import gridspec

    n_panels_x = min(ncols, num_panels)
    n_panels_y = np.ceil(num_panels / n_panels_x).astype(int)
    # each panel will have the size of rcParams['figure.figsize']
    fig = pl.figure(
        figsize=(
            n_panels_x * rcParams['figure.figsize'][0] * (1 + wspace),
            n_panels_y * rcParams['figure.figsize'][1],
        ),
    )
    left = 0.2 / n_panels_x
    bottom = 0.13 / n_panels_y
    gs = gridspec.GridSpec(
        nrows=n_panels_y,
        ncols=n_panels_x,
        left=left,
        right=1 - (n_panels_x - 1) * left - 0.01 / n_panels_x,
        bottom=bottom,
        top=1 - (n_panels_y - 1) * bottom - 0.1 / n_panels_y,
        hspace=hspace,
        wspace=wspace,
    )
    return fig, gs 
開發者ID:theislab,項目名稱:scanpy,代碼行數:27,代碼來源:scatterplots.py

示例5: plot_raster_cmp

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot_raster_cmp(spike_trains, population=None, time_window=None, node_ids=None, ts_units=None, show_plot=True,
                    save_as=None, with_labels=False):
    spike_trains_l = _get_spike_trains(spike_trains)
    time_window = time_window or _find_time_window(spike_trains_l, population)
    labels = _build_labels_lu(with_labels, spike_trains)

    gs = gridspec.GridSpec(1, 1)
    for i, spikes in enumerate(spike_trains_l):
        spikes_df = spikes.to_dataframe(populations=population, time_window=time_window, node_ids=node_ids)
        ax1 = plt.subplot(gs[0])
        ax1.scatter(spikes_df['timestamps'], spikes_df['node_ids'], lw=0, s=5, label=labels[i])
        ax1.legend(loc=1, prop={'size': 10})
        ax1.set_xlim([time_window[0], time_window[1]])

    if save_as is not None:
        plt.savefig(save_as)

    if show_plot:
        plt.show() 
開發者ID:AllenInstitute,項目名稱:sonata,代碼行數:21,代碼來源:plotting.py

示例6: get_gridspec

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def get_gridspec(self, figure, nmr_plots):
        rows = self.rows
        cols = self.cols

        if rows is None and cols is None:
            return AutoGridLayout(spacings=self.spacings).get_gridspec(figure, nmr_plots)

        if rows is None:
            rows = int(np.ceil(nmr_plots / cols))
        if cols is None:
            cols = int(np.ceil(nmr_plots / rows))

        if rows * cols < nmr_plots:
            cols = int(np.ceil(nmr_plots / rows))

        return GridLayoutSpecifier(GridSpec(rows, cols, **self.spacings), figure) 
開發者ID:robbert-harms,項目名稱:MDT,代碼行數:18,代碼來源:layouts.py

示例7: show_images

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def show_images(images, rgb=True):
    gs = gridspec.GridSpec(1, len(images))
    for i, image in enumerate(images):
        plt.subplot(gs[0, i])
        if rgb:
            plt.imshow(image)
        else:
            image = image.reshape(image.shape[0], image.shape[1])
            plt.imshow(image, cmap='gray')
        plt.axis('off')
    plt.show() 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:13,代碼來源:16_basic_kernels.py

示例8: _hrv_plot

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _hrv_plot(peaks, out, sampling_rate=1000):

    fig = plt.figure(constrained_layout=False)
    spec = gs.GridSpec(ncols=2, nrows=2, height_ratios=[1, 1], width_ratios=[1, 1])

    # Arrange grids
    ax_distrib = fig.add_subplot(spec[0, :-1])
    ax_distrib.set_xlabel("R-R intervals (ms)")
    ax_distrib.set_title("Distribution of R-R intervals")

    ax_psd = fig.add_subplot(spec[1, :-1])

    spec_within = gs.GridSpecFromSubplotSpec(4, 4, subplot_spec=spec[:, -1], wspace=0.025, hspace=0.05)
    ax_poincare = fig.add_subplot(spec_within[1:4, 0:3])
    ax_marg_x = fig.add_subplot(spec_within[0, 0:3])
    ax_marg_x.set_title("Poincaré Plot")
    ax_marg_y = fig.add_subplot(spec_within[1:4, 3])

    # Distribution of RR intervals
    peaks = _hrv_sanitize_input(peaks)
    rri = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=False)
    ax_distrib = summary_plot(rri, ax=ax_distrib)

    # Poincare plot
    out.columns = [col.replace("HRV_", "") for col in out.columns]
    _hrv_nonlinear_show(rri, out, ax=ax_poincare, ax_marg_x=ax_marg_x, ax_marg_y=ax_marg_y)

    # PSD plot
    rri, sampling_rate = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=True)
    frequency_bands = out[["ULF", "VLF", "LF", "HF", "VHF"]]
    _hrv_frequency_show(rri, frequency_bands, sampling_rate=sampling_rate, ax=ax_psd) 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:33,代碼來源:hrv.py

示例9: _generate_4_axes_via_gridspec

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _generate_4_axes_via_gridspec():
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import matplotlib.gridspec  # noqa

    gs = mpl.gridspec.GridSpec(2, 2)
    ax_tl = plt.subplot(gs[0, 0])
    ax_ll = plt.subplot(gs[1, 0])
    ax_tr = plt.subplot(gs[0, 1])
    ax_lr = plt.subplot(gs[1, 1])

    return gs, [ax_tl, ax_ll, ax_tr, ax_lr] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_frame.py

示例10: imgPixInColorSpace

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def imgPixInColorSpace(pixData):
    fig = plt.figure()
    gs = gridspec.GridSpec(1, 3)

    im = fig.add_subplot(gs[0,0])
    im.imshow(pixData)
    im.set_title("2D Image")

    ax = fig.add_subplot(gs[0,1:3], projection='3d')
    colors = np.reshape(pixData, (pixData.shape[0] * pixData.shape[1], pixData.shape[2]))
    colors = colors / 255.0
    ax.scatter(pixData[:,:,0], pixData[:,:,1], pixData[:,:,2], c=colors)
    ax.set_xlabel("Red", color='red')
    ax.set_ylabel("Green", color='green')
    ax.set_zlabel("Blue", color='blue')

    ax.set_title("Image in Color Space")

    ax.set_xlim(0, 255)
    ax.set_ylim(0, 255)
    ax.set_zlim(0, 255)

    ax.xaxis.set_ticks([])
    ax.yaxis.set_ticks([])
    ax.zaxis.set_ticks([])


    plt.show() 
開發者ID:rainyear,項目名稱:ImageColorTheme,代碼行數:30,代碼來源:test.py

示例11: imgPalette

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def imgPalette(imgs, themes, titles):
    N = len(imgs)

    fig = plt.figure()
    gs  = gridspec.GridSpec(len(imgs), len(themes)+1)
    print(N)
    for i in range(N):
        im = fig.add_subplot(gs[i, 0])
        im.imshow(imgs[i])
        im.set_title("Image %s" % str(i+1))
        im.xaxis.set_ticks([])
        im.yaxis.set_ticks([])

        t = 1
        for themeLst in themes:
            theme = themeLst[i]
            pale = np.zeros(imgs[i].shape, dtype=np.uint8)
            h, w, _ = pale.shape
            ph  = h / len(theme)
            for y in range(h):
                pale[y,:,:] = np.array(theme[int(y / ph)], dtype=np.uint8)
            pl = fig.add_subplot(gs[i, t])
            pl.imshow(pale)
            pl.set_title(titles[t-1])
            pl.xaxis.set_ticks([])
            pl.yaxis.set_ticks([])

            t += 1

    plt.show() 
開發者ID:rainyear,項目名稱:ImageColorTheme,代碼行數:32,代碼來源:test.py

示例12: __init__

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def __init__(self,
               name,
               figsize=(8, 10),
               max_outputs=3,
               subplot_grid_shape=None,
               gridspec_kwargs=None,
               plot_func=AddImage,
               shared_subplot_kwargs=None):
    """Creates a new MatplotlibFigureSummary object.

    Args:
      name: A string name for the generated summary.
      figsize: A 2D tuple containing the overall figure (width, height)
        dimensions in inches.
      max_outputs: The maximum number of images to generate.
      subplot_grid_shape: A 2D tuple containing the height and width dimensions
        of the subplot grid.  height * width must be >= the number of subplots.
        Defaults to (num_subplots, 1), i.e. a vertical stack of plots.
      gridspec_kwargs: A dict of extra keyword args to use when initializing the
        figure's gridspec, as supported by matplotlib.gridspec.GridSpec.
      plot_func: A function shared across all subplots used to populate a single
        subplot.  See the docstring for AddSubplot for details.
      shared_subplot_kwargs: A dict of extra keyword args to pass to the plot
        function for all subplots.  This is useful for specifying properties
        such as 'clim' which should be consistent across all subplots.
    """
    self._name = name
    self._figsize = figsize
    self._max_outputs = max_outputs
    self._subplot_grid_shape = subplot_grid_shape
    self._gridspec_kwargs = gridspec_kwargs if gridspec_kwargs else {}
    self._plot_func = plot_func
    self._shared_subplot_kwargs = (
        shared_subplot_kwargs if shared_subplot_kwargs else {})
    self._subplots = [] 
開發者ID:tensorflow,項目名稱:lingvo,代碼行數:37,代碼來源:plot.py

示例13: Finalize

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def Finalize(self):
    """Finishes creation of the overall figure, returning the image summary."""
    subplot_grid_shape = self._subplot_grid_shape
    if subplot_grid_shape is None:
      subplot_grid_shape = (len(self._subplots), 1)

    # AddMatplotlibFigureSummary (due to restrictions of py_func) only supports
    # flattened list of tensors so we must do some bookkeeping to maintain a
    # mapping from _SubplotMetadata object to flattened_tensors.
    subplot_slices = []
    flattened_tensors = []
    for subplot in self._subplots:
      start = len(flattened_tensors)
      subplot_slices.append((start, start + len(subplot.tensor_list)))
      flattened_tensors.extend(subplot.tensor_list)

    def PlotFunc(fig, *numpy_data_list):
      gs = gridspec.GridSpec(*subplot_grid_shape, **self._gridspec_kwargs)
      for n, subplot in enumerate(self._subplots):
        axes = fig.add_subplot(gs[n])
        start, end = subplot_slices[n]
        subplot_data = numpy_data_list[start:end]
        subplot.plot_func(fig, axes, *subplot_data)

    func = functools.partial(_RenderMatplotlibFigures, self._figsize,
                             self._max_outputs, PlotFunc)
    batch_sizes = [tf.shape(t)[0] for t in flattened_tensors]
    num_tensors = len(flattened_tensors)
    with tf.control_dependencies([
        tf.assert_equal(
            batch_sizes, [batch_sizes[0]] * num_tensors, summarize=num_tensors)
    ]):
      rendered = tf.py_func(
          func, flattened_tensors, tf.uint8, name='RenderMatplotlibFigures')
    return tf.summary.image(self._name, rendered, max_outputs=self._max_outputs) 
開發者ID:tensorflow,項目名稱:lingvo,代碼行數:37,代碼來源:plot.py

示例14: plot2d

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def plot2d(u, learned_u, t):
    fig, ax = plt.subplots(nrows=1, ncols=1)
    ax.axis('off')

    gs0 = gridspec.GridSpec(3, 1)
    gs0.update(top=0.95, bottom=0.15, left=0.1, right=0.95, hspace=0.5)
    
    ax = plt.subplot(gs0[0:1, 0:1])
    ax.plot(t,u[:,0],'r-')
    ax.plot(t,learned_u[:,0],'k--')
    ax.set_xlabel('$t$')
    ax.set_ylabel('$x$')
    
    ax = plt.subplot(gs0[1:2, 0:1])
    ax.plot(t,u[:,1],'r-')
    ax.plot(t,learned_u[:,1],'k--')
    ax.set_xlabel('$t$')
    ax.set_ylabel('$y$')
    
    ax = plt.subplot(gs0[2:3, 0:1])
    ax.plot(t,u[:,2],'r-',label='Exact Dynamics')
    ax.plot(t,learned_u[:,2],'k--',label='Learned Dynamics')
    ax.set_xlabel('$t$')
    ax.set_ylabel('$z$')
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.4), ncol=2, frameon=False)

    plt.show() 
開發者ID:Kashu7100,項目名稱:Qualia2.0,代碼行數:29,代碼來源:lorenz.py

示例15: _justified

# 需要導入模塊: from matplotlib import gridspec [as 別名]
# 或者: from matplotlib.gridspec import GridSpec [as 別名]
def _justified(self, nrows, grid_arrangement):
        ax_specs = []
        num_small_cols = np.lcm.reduce(grid_arrangement)
        gs = gridspec.GridSpec(
            nrows, num_small_cols, figure=plt.figure(constrained_layout=True)
        )
        for r, row_cols in enumerate(grid_arrangement):
            skip = num_small_cols // row_cols
            for col in range(row_cols):
                s = col * skip
                e = s + skip

                ax_specs.append(gs[r, s:e])
        return ax_specs 
開發者ID:matplotlib,項目名稱:grid-strategy,代碼行數:16,代碼來源:_abc.py


注:本文中的matplotlib.gridspec.GridSpec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。