本文整理匯總了Python中matplotlib.figure.figaspect方法的典型用法代碼示例。如果您正苦於以下問題:Python figure.figaspect方法的具體用法?Python figure.figaspect怎麽用?Python figure.figaspect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.figure
的用法示例。
在下文中一共展示了figure.figaspect方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: matshow
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def matshow(A, fignum=None, **kw):
"""
Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (first
dimension of the array) are displayed horizontally. The aspect
ratio of the figure window is that of the array, unless this would
make an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
With the exception of *fignum*, keyword arguments are passed to
:func:`~matplotlib.pyplot.imshow`. You may set the *origin*
kwarg to "lower" if you want the first row in the array to be
at the bottom instead of the top.
*fignum*: [ None | integer | False ]
By default, :func:`matshow` creates a new figure window with
automatic numbering. If *fignum* is given as an integer, the
created figure will use this figure number. Because of how
:func:`matshow` tries to set the figure aspect ratio to be the
one of the array, if you provide the number of an already
existing figure, strange things may happen.
If *fignum* is *False* or 0, a new figure window will **NOT** be created.
"""
A = np.asanyarray(A)
if fignum is False or fignum is 0:
ax = gca()
else:
# Extract actual aspect ratio of array and make appropriately sized figure
fig = figure(fignum, figsize=figaspect(A))
ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
im = ax.matshow(A, **kw)
sci(im)
draw_if_interactive()
return im
示例2: plotMatches2
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def plotMatches2(listofNValues, errors,
listOfScales, scaleErrors,
fileName = "scalar_matches.pdf"):
"""
Plot two figures side by side in an aspect ratio appropriate for the paper.
"""
w, h = figaspect(0.4)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(w,h))
plotMatches(listofNValues, errors, fileName=None, fig=fig, ax=ax1)
plotScaledMatches(listOfScales, scaleErrors, fileName=None, fig=fig, ax=ax2)
plt.savefig(fileName)
plt.close()
示例3: make_fig_ax
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def make_fig_ax(aspect_ratio=0.5, x_align=0.65, left=0.10):
"""
Method to make matplotlib figure and axes objects. Using Object Oriented interface from https://matplotlib.org/gallery/api/agg_oo_sgskip.html
Args:
aspect_ratio: (float), aspect ratio for figure and axes creation
x_align: (float), x position to draw edge of figure. Needed so can display stats alongside plot
left: (float), the leftmost position to draw edge of figure
Returns:
fig: (matplotlib fig object), a matplotlib figure object with the specified aspect ratio
ax: (matplotlib ax object), a matplotlib axes object with the specified aspect ratio
"""
# Set image aspect ratio:
w, h = figaspect(aspect_ratio)
fig = Figure(figsize=(w,h))
FigureCanvas(fig)
# Set custom positioning, see this guide for more details:
# https://python4astronomers.github.io/plotting/advanced.html
#left = 0.10
bottom = 0.15
right = 0.01
top = 0.05
width = x_align - left - right
height = 1 - bottom - top
ax = fig.add_axes((left, bottom, width, height), frameon=True)
fig.set_tight_layout(False)
return fig, ax
示例4: make_fig_ax_square
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def make_fig_ax_square(aspect='equal', aspect_ratio=1):
"""
Method to make square shaped matplotlib figure and axes objects. Using Object Oriented interface from
https://matplotlib.org/gallery/api/agg_oo_sgskip.html
Args:
aspect: (str), 'equal' denotes x and y aspect will be equal (i.e. square)
aspect_ratio: (float), aspect ratio for figure and axes creation
Returns:
fig: (matplotlib fig object), a matplotlib figure object with the specified aspect ratio
ax: (matplotlib ax object), a matplotlib axes object with the specified aspect ratio
"""
# Set image aspect ratio:
w, h = figaspect(aspect_ratio)
fig = Figure(figsize=(w,h))
FigureCanvas(fig)
ax = fig.add_subplot(111, aspect=aspect)
return fig, ax
示例5: matshow
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def matshow(A, fignum=None, **kwargs):
"""
Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (first
dimension of the array) are displayed horizontally. The aspect
ratio of the figure window is that of the array, unless this would
make an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
Parameters
----------
A : array-like(M, N)
The matrix to be displayed.
fignum : None or int or False
If *None*, create a new figure window with automatic numbering.
If *fignum* is an integer, draw into the figure with the given number
(create it if it does not exist).
If 0 or *False*, use the current axes if it exists instead of creating
a new figure.
.. note::
Because of how `.Axes.matshow` tries to set the figure aspect
ratio to be the one of the array, strange things may happen if you
reuse an existing figure.
Returns
-------
image : `~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
"""
A = np.asanyarray(A)
if fignum is False or fignum is 0:
ax = gca()
else:
# Extract actual aspect ratio of array and make appropriately sized figure
fig = figure(fignum, figsize=figaspect(A))
ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
im = ax.matshow(A, **kwargs)
sci(im)
return im
示例6: matshow
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def matshow(A, fignum=None, **kwargs):
"""
Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (first
dimension of the array) are displayed horizontally. The aspect
ratio of the figure window is that of the array, unless this would
make an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
Parameters
----------
A : array-like(M, N)
The matrix to be displayed.
fignum : None or int or False
If *None*, create a new figure window with automatic numbering.
If a nonzero integer, draw into the figure with the given number
(create it if it does not exist).
If 0, use the current axes (or create one if it does not exist).
.. note::
Because of how `.Axes.matshow` tries to set the figure aspect
ratio to be the one of the array, strange things may happen if you
reuse an existing figure.
Returns
-------
image : `~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
"""
A = np.asanyarray(A)
if fignum == 0:
ax = gca()
else:
# Extract actual aspect ratio of array and make appropriately sized figure
fig = figure(fignum, figsize=figaspect(A))
ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
im = ax.matshow(A, **kwargs)
sci(im)
return im
示例7: plot_3d_heatmap
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def plot_3d_heatmap(xs, ys, zs, heats, savepath,
xlabel='x', ylabel='y', zlabel='z', heatlabel='heat'):
"""
Method to plot a heatmap for values of three variables; used for plotting GridSearch results in hyperparameter optimization.
Args:
xs: (numpy array), array of first variable values to plot heatmap against
ys: (numpy array), array of second variable values to plot heatmap against
zs: (numpy array), array of third variable values to plot heatmap against
heats: (numpy array), array of heat values to plot
savepath: (str), path to save the 2D heatmap to
xlabel: (str), the x-axis label
ylabel: (str), the y-axis label
zlabel: (str), the z-axis label
heatlabel: (str), the heat value axis label
"""
# Escape from error of passing tuples when optimzing neural net
# TODO have more general solution
try:
# this import has side effects, needed for 3d plots:
from mpl_toolkits.mplot3d import Axes3D
# Set image aspect ratio:
# (eeds to be wide enough or plot will shrink really skinny)
w, h = figaspect(0.6)
fig = Figure(figsize=(w,h))
FigureCanvas(fig) # modifies fig in place
ax = fig.add_subplot(111, projection='3d')
scat = ax.scatter(xs, ys, zs, c=heats)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)
cb = fig.colorbar(scat)
cb.set_label(heatlabel)
fig.savefig(savepath, dpi=DPI, bbox_inches='tight')
except TypeError:
pass
def animate(i):
ax.view_init(elev=10., azim=i)
return [fig]
anim = FuncAnimation(fig, animate, frames=range(0,90,5), blit=True)
#anim.save(savepath+'.mp4', fps=5, extra_args=['-vcodec', 'libx264'])
anim.save(savepath+'.gif', fps=5, dpi=80, writer='imagemagick')
示例8: matshow
# 需要導入模塊: from matplotlib import figure [as 別名]
# 或者: from matplotlib.figure import figaspect [as 別名]
def matshow(A, fignum=None, **kwargs):
"""
Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (first
dimension of the array) are displayed horizontally. The aspect
ratio of the figure window is that of the array, unless this would
make an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
Parameters
----------
A : array-like(M, N)
The matrix to be displayed.
fignum : None or int or False
If *None*, create a new figure window with automatic numbering.
If a nonzero integer, draw into the figure with the given number
(create it if it does not exist).
If 0, use the current axes (or create one if it does not exist).
.. note::
Because of how `.Axes.matshow` tries to set the figure aspect
ratio to be the one of the array, strange things may happen if you
reuse an existing figure.
Returns
-------
image : `~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
"""
A = np.asanyarray(A)
if fignum == 0:
ax = gca()
else:
# Extract actual aspect ratio of array and make appropriately sized
# figure.
fig = figure(fignum, figsize=figaspect(A))
ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
im = ax.matshow(A, **kwargs)
sci(im)
return im