本文整理匯總了Python中matplotlib.colors.to_rgba_array方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.to_rgba_array方法的具體用法?Python colors.to_rgba_array怎麽用?Python colors.to_rgba_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.to_rgba_array方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _shade_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def _shade_colors(self, color, normals):
'''
Shade *color* using normal vectors given by *normals*.
*color* can also be an array of the same length as *normals*.
'''
shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5])
if proj3d.mod(n) else np.nan
for n in normals])
mask = ~np.isnan(shade)
if len(shade[mask]) > 0:
norm = Normalize(min(shade[mask]), max(shade[mask]))
shade[~mask] = min(shade[mask])
color = mcolors.to_rgba_array(color)
# shape of color should be (M, 4) (where M is number of faces)
# shape of shade should be (M,)
# colors should have final shape of (M, 4)
alpha = color[:, 3]
colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
colors[:, 3] = alpha
else:
colors = np.asanyarray(color).copy()
return colors
示例2: test_eventplot_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def test_eventplot_colors(colors):
'''Test the *colors* parameter of eventplot. Inspired by the issue #8193.
'''
data = [[i] for i in range(4)] # 4 successive events of different nature
# Build the list of the expected colors
expected = [c if c is not None else 'C0' for c in colors]
# Convert the list into an array of RGBA values
# NB: ['rgbk'] is not a valid argument for to_rgba_array, while 'rgbk' is.
if len(expected) == 1:
expected = expected[0]
expected = np.broadcast_to(mcolors.to_rgba_array(expected), (len(data), 4))
fig, ax = plt.subplots()
if len(colors) == 1: # tuple with a single string (like '0.5' or 'rgbk')
colors = colors[0]
collections = ax.eventplot(data, colors=colors)
for coll, color in zip(collections, expected):
assert_allclose(coll.get_color(), color)
示例3: test_conversions
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def test_conversions():
# to_rgba_array("none") returns a (0, 4) array.
assert_array_equal(mcolors.to_rgba_array("none"), np.zeros((0, 4)))
# a list of grayscale levels, not a single color.
assert_array_equal(
mcolors.to_rgba_array([".2", ".5", ".8"]),
np.vstack([mcolors.to_rgba(c) for c in [".2", ".5", ".8"]]))
# alpha is properly set.
assert mcolors.to_rgba((1, 1, 1), .5) == (1, 1, 1, .5)
assert mcolors.to_rgba(".1", .5) == (.1, .1, .1, .5)
# builtin round differs between py2 and py3.
assert mcolors.to_hex((.7, .7, .7)) == "#b2b2b2"
# hex roundtrip.
hex_color = "#1234abcd"
assert mcolors.to_hex(mcolors.to_rgba(hex_color), keep_alpha=True) == \
hex_color
示例4: test_eventplot_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def test_eventplot_colors(colors):
'''Test the *colors* parameter of eventplot. Inspired by the issue #8193.
'''
data = [[i] for i in range(4)] # 4 successive events of different nature
# Build the list of the expected colors
expected = [c if c is not None else 'C0' for c in colors]
# Convert the list into an array of RGBA values
# NB: ['rgbk'] is not a valid argument for to_rgba_array, while 'rgbk' is.
if len(expected) == 1:
expected = expected[0]
expected = broadcast_to(mcolors.to_rgba_array(expected), (len(data), 4))
fig, ax = plt.subplots()
if len(colors) == 1: # tuple with a single string (like '0.5' or 'rgbk')
colors = colors[0]
collections = ax.eventplot(data, colors=colors)
for coll, color in zip(collections, expected):
assert_allclose(coll.get_color(), color)
示例5: _update_prop
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def _update_prop(self, legend_handle, orig_handle):
def first_color(colors):
if colors is None:
return None
colors = mcolors.to_rgba_array(colors)
if len(colors):
return colors[0]
else:
return "none"
def get_first(prop_array):
if len(prop_array):
return prop_array[0]
else:
return None
edgecolor = getattr(orig_handle, '_original_edgecolor',
orig_handle.get_edgecolor())
legend_handle.set_edgecolor(first_color(edgecolor))
facecolor = getattr(orig_handle, '_original_facecolor',
orig_handle.get_facecolor())
legend_handle.set_facecolor(first_color(facecolor))
legend_handle.set_fill(orig_handle.get_fill())
legend_handle.set_hatch(orig_handle.get_hatch())
legend_handle.set_linewidth(get_first(orig_handle.get_linewidths()))
legend_handle.set_linestyle(get_first(orig_handle.get_linestyles()))
legend_handle.set_transform(get_first(orig_handle.get_transforms()))
legend_handle.set_figure(orig_handle.get_figure())
legend_handle.set_alpha(orig_handle.get_alpha())
示例6: setup_method
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def setup_method(self):
self.mask1 = [False, False, True, True, False, False]
self.arr0 = np.arange(1.0, 7.0)
self.arr1 = [1, 2, 3, np.nan, np.nan, 6]
self.arr2 = np.array(self.arr1)
self.arr3 = np.ma.array(self.arr2, mask=self.mask1)
self.arr_s = ['a', 'b', 'c', 'd', 'e', 'f']
self.arr_s2 = np.array(self.arr_s)
self.arr_dt = [datetime(2008, 1, 1), datetime(2008, 1, 2),
datetime(2008, 1, 3), datetime(2008, 1, 4),
datetime(2008, 1, 5), datetime(2008, 1, 6)]
self.arr_dt2 = np.array(self.arr_dt)
self.arr_colors = ['r', 'g', 'b', 'c', 'm', 'y']
self.arr_rgba = mcolors.to_rgba_array(self.arr_colors)
示例7: _shade_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def _shade_colors(color, normals, lightsource=None):
"""
Shade *color* using normal vectors given by *normals*.
*color* can also be an array of the same length as *normals*.
"""
if lightsource is None:
# chosen for backwards-compatibility
lightsource = LightSource(azdeg=225, altdeg=19.4712)
def mod(v):
return np.sqrt(v[0] ** 2 + v[1] ** 2 + v[2] ** 2)
shade = np.array([np.dot(n / mod(n), lightsource.direction)
if mod(n) else np.nan for n in normals])
mask = ~np.isnan(shade)
if mask.any():
norm = Normalize(min(shade[mask]), max(shade[mask]))
shade[~mask] = min(shade[mask])
color = mcolors.to_rgba_array(color)
# shape of color should be (M, 4) (where M is number of faces)
# shape of shade should be (M,)
# colors should have final shape of (M, 4)
alpha = color[:, 3]
colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
colors[:, 3] = alpha
else:
colors = np.asanyarray(color).copy()
return colors
示例8: _shade_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def _shade_colors(self, color, normals, lightsource=None):
"""
Shade *color* using normal vectors given by *normals*.
*color* can also be an array of the same length as *normals*.
"""
if lightsource is None:
# chosen for backwards-compatibility
lightsource = LightSource(azdeg=225, altdeg=19.4712)
with np.errstate(invalid="ignore"):
shade = ((normals / np.linalg.norm(normals, axis=1, keepdims=True))
@ lightsource.direction)
mask = ~np.isnan(shade)
if mask.any():
# convert dot product to allowed shading fractions
in_norm = Normalize(-1, 1)
out_norm = Normalize(0.3, 1).inverse
def norm(x):
return out_norm(in_norm(x))
shade[~mask] = 0
color = mcolors.to_rgba_array(color)
# shape of color should be (M, 4) (where M is number of faces)
# shape of shade should be (M,)
# colors should have final shape of (M, 4)
alpha = color[:, 3]
colors = norm(shade)[:, np.newaxis] * color
colors[:, 3] = alpha
else:
colors = np.asanyarray(color).copy()
return colors
示例9: test_cmap_and_norm_from_levels_and_colors2
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import to_rgba_array [as 別名]
def test_cmap_and_norm_from_levels_and_colors2():
levels = [-1, 2, 2.5, 3]
colors = ['red', (0, 1, 0), 'blue', (0.5, 0.5, 0.5), (0.0, 0.0, 0.0, 1.0)]
clr = mcolors.to_rgba_array(colors)
bad = (0.1, 0.1, 0.1, 0.1)
no_color = (0.0, 0.0, 0.0, 0.0)
masked_value = 'masked_value'
# Define the test values which are of interest.
# Note: levels are lev[i] <= v < lev[i+1]
tests = [('both', None, {-2: clr[0],
-1: clr[1],
2: clr[2],
2.25: clr[2],
3: clr[4],
3.5: clr[4],
masked_value: bad}),
('min', -1, {-2: clr[0],
-1: clr[1],
2: clr[2],
2.25: clr[2],
3: no_color,
3.5: no_color,
masked_value: bad}),
('max', -1, {-2: no_color,
-1: clr[0],
2: clr[1],
2.25: clr[1],
3: clr[3],
3.5: clr[3],
masked_value: bad}),
('neither', -2, {-2: no_color,
-1: clr[0],
2: clr[1],
2.25: clr[1],
3: no_color,
3.5: no_color,
masked_value: bad}),
]
for extend, i1, cases in tests:
cmap, norm = mcolors.from_levels_and_colors(levels, colors[0:i1],
extend=extend)
cmap.set_bad(bad)
for d_val, expected_color in cases.items():
if d_val == masked_value:
d_val = np.ma.array([1], mask=True)
else:
d_val = [d_val]
assert_array_equal(expected_color, cmap(norm(d_val))[0],
'Wih extend={0!r} and data '
'value={1!r}'.format(extend, d_val))
with pytest.raises(ValueError):
mcolors.from_levels_and_colors(levels, colors)